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1. OVERVIEW OF MOTIVIC MULTIPLICATIVE STRUCTURE

The following diagram presents the comparison between classical multiplicative structures in
terms of operads and motivic multiplicative structures in terms of multiplicative transfers.

L presented as —
Span(Fin,inj, all) «—————— | intrinsic symmetry‘ Span(Sch, all, fét)

universal commutative monoid | universal normed category

presented as

Jparametrize encoded in parametrizel

!

encoded in .. . encoded in L.
Eso-structure «+—— — multiplicative coherence data ———— motivic normed structure

E~c-operad action :

take motivic colimits !
pass to homotopy I
|

~
Hoo-structure motivic extended powers

Eoc-operad homotopy action !

I
h 1
pass to cohomology pass to cohomology :

|
~

power operations motivic power operations
FIGURE 1. Multiplicative structures in different contexts

Remark 1.1. Note that
Fun(Span(Fin,inj,all),C) ~ Fun(Fins,C),

where C is an co-category with finite products [BH21, Proposition C.1.]. Thus we may conclude that
Span(Fin,inj, all) is the universal commutative monoid. The process from Fin, to Ex-structure is
subtle. More precisely, we should take the nerve N (Fin,) of Fin,. I think should we regard N (Fin.)
as a kind of universal category of operators, and we may produce an [E.-operad from this perspective,
but I do not know how to do it rigorously. The key point is that there should a translation between
the ordinary-categorically operadic formulation and the co-categorical formulation for multiplicative
structure. Moreover, may we need to adapt the notion of categories of operators to algebraic
geometry from this perspective.



MOTIVIC MULTIPLICATIVE STRUCTURES 3

2. NORMS IN MOTIVIC STABLE HOMOTOPY THEORY

In this chapter, we assume that all the based schemes are quasi-compact and quasi-separated (we
need this assumption, otherwise some categories over S are not compactly generated). Let Smg be
the category of smooth schemes of finite type over S.

Theorem 2.1. Let p: T — S be an integral and universally open morphism. Then there is a
symmetric monoidal functor called multiplicative transfer

p®2 H.(T) — H.(S)
such that

(1) Sifted colimits is preserved by pg.
(2) p« is extended by pg i.e. pg(Yy) =~ (piY )4 for Y € Smg.

(3) If p: S x {n} — S is the trivial projection (we may also write it into a fold map S — S),
then pg is the n-fold smash product.

If p is a finite étale , then we can extend pg to stable motivic homotopy categories
pe: SH(T) — SH(S).

This section is devoted to sketch the construction of this multiplicative transfers.
First, we recall the construction of stable motivic homotopy category SH(S) over S.

g add based points
m > DN
S X—=XUsS S+

sifted cocompletion sifted cocompletion

add based points

Pz;(srng) _— 'PE(SIIIS_,_) ~ PE(Sms).

motivic localization motivic localization

add based points

H(S) He(S)

Pl-stabilization EE’;{

SH(S) = Ha(S)[P5']

FIGURE 2. The construction of stable motivic homotopy category

Remark 2.2. The stable co-category SH(S) is the (homotopy) limit of the tower

1 QAl

o H(S) T H(8) L5 Ha(S),

The construction of pg is based on this process:

e unbased presheaves level: Write down p,: Px(Smr) — Px(Smg);
e based presheaves level: Write down pg: Px(Smr)e — Px(Smg)e

e motivic spaces level: pg preserves motivic equivalences for good morphisms

e motivic spectra level: pg preserves motivic Thom spaces for some family of morphisms.
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2.1. Multiplicative transfer on unbased presheaves. In this subsection, we discuss the notion
of Weil restrictions, which will be used considering the stabilizations. Basically, we expect that if
V — X is an algebraic vector bundle in Smyp, and p: T'— S is a good morphism (we will see what
“good morpihsm” means), then pg (V) — pg(X) is also a vector bundle. More precisely, both pg (V)
and pg(X) are represented by smooth S-schemes.

Definition 2.3. Let f: Q — R be a morphism of scheme. The pushforward
f«: P(Schg) — P(Schg)
is defined by
[+F(X) :=F(X xgrQ), X € Smg, F € P(Smg)
If the F' is represented by X € Schg and f.X is representable in Schg, then the representative
R-scheme is denoted by Ry X called Weil restriction of X along f.
Example 2.4. Let L/K be a finite Galois extension with Galois group G, let V' € Smy, . The Weil
restriction of X along L/K should be a pair (X, ¢) where
o X € Smg;
e ¢©: X1 — X a morphism of smooth schemes.
such that for any smooth scheme 7" over K and f: 77, — X, there exists a unique smooth morphism
f:T — X such that po (f)r = f, namely
X
3 f A \
T XL

N T

TLT)X

Now we let X be a smooth quasi-projective scheme over L. Let

Nmg(X) := H o' X
oeG

Then, for o € Gal(L/K), there exists an isomorphism ¢, : Nmg(X) ~ Nmg(X) over Spec(L) given
by id x o*, such that (Nmg(X), {¢s}seccai(r/k)) is an effective descent datum, see Appendix A,

Theorem A.12. Then we let X € Smy such that
(Nme(X), {¢o }oecain/x)) ~ X.
In particular, X & Nmg(X), according to the definition of effective descent data, and
He=]]cf
which corresponds to a morphism f T — X uniquely’

Example 2.5. Given a finite field extension L/K of order d. If we specify a K-basis {e1,--- ,eq}
of L, then for an affine L-space A} = SpecL[x1,- - , 2y, the Weil restriction R, /K (A7) is given by

SpecK[y;j] = A
Similarly, we have an analogous result for projective spaces.

1t is because the essential image of the fully faithful functor from Smxg to the category of Galois descent data
along L/K is exactly the category of effective Galois descent data.
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Proposition 2.6. If V admits has the Weil restriction, then either a Zariski-open L-subscheme of
V or a closed L-subscheme has its Weil restriction.

Proof. See [Wei82, Section 1.3]. O

Theorem 2.7. Let p: T'— S be a finite locally free morphism between schemes, and X a quasi-
projective T-scheme. Then the Weil restriction R, X exists and is quasi-projective over S.

Proof. See [BLR90, Section 7.6, Theorem 4. O

Remark 2.8. We need to require that the morphism should be finite locally free, because we need
to basis affine-locally, as we do in Example 2.5.

Proposition 2.9. Let T be an arbitrary scheme and X € Smp. Suppose there is a finite locally
free morphism p: " — S. R, X is smooth over S whenever the Weil restriction exists.

2.2. Multiplicative transfer on based presheaves. Extend p, from non-pointed case to pointed
case at the level of presheaves. More specifically, we need to extend it to a functor Px(Smy)e e,
Px(Smg)e such that the requirements are satisfied.

Note that Py (Smy)e is generated under sifted colimits by objects of the form X, . However, there
is an obstruction on the way to the based cases: some maps in Py (Sm)pr may not come from the
functor X +— X, . For example, f: (X UY ), — X, that collapse Y to the base point cannot come
from any map X UY — X. Therefore, the key point is how we define such p,(X LUY); — po(X)+.

Here we specialize the case to the case where X,Y € Smyp. Then for any U € Smg, we decode
the items:

(1) pu(X UY)s(U) = Smp(U xs T, X UY )4
(2) pe(X)4(U) = Smp(U x5 T, X);

For any s: U xg T — X UY, how should we define pg(f)(s) € p«(X)+? Notice that we should
collapse the part s[s-1(yy: s HY) = Y according to the definition of f.

UxgT 2 Xuy
J{collapse the “cross terms"
UxgT—s4(Y) —> 5 X

However, the bottom arrow is not an element in p,(X)(U) evidently, which is regarded as a “cross
term" in p.(X)(U). To make it more clear, we need to separate s|s-1(yy: s7'(Y) — Y from
s:UxgT — XUY in p (X UY)(U) by decomposing the presheaf p,(X LY.

Definition 2.10. A relatively representable morphism is a morphism Y — X in P(Smyp) is
such that the presheaf V' x x Y is representable whenever V' — X for some V € Smyp.

Lemma 2.11. For any coproduct decomposition X = X; U Xs in Px(Smg), the natural inclusion
X1 — X is relative representable.

Proof. Let j; : X; — X be the natural inclusion for each i = 1,2. For any ¥ € Smg, by the
universality of colimits, we have Y = Y; U Ys, where

Y;':YX)(Xi fOI‘iZl,Q
Recall that &(Y) = Homgp (Y, Al). Then we can decompose the ring of functions of Y into
Homgpg (Y, A') = Homgm (Y1 U Y2, A') = Homgpg (Y1, A') x Homgm (Y2, A')

By reducing the case to affine cases, we can decompose Y into two clopen subsets that represents
Y1 and Y5 respectively. O
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Construction 2.12. Let Y7,..., Y, — X be relatively representable morphisms. For U € Smg, let
e (X|Y1, ..., V)(U) :={s: U xs T — X | s 1(Y;) = U is surjective for all 7}

where s~1(Y;) — U is given by the middle vertical composition of arrows in the following diagram.

s_l(Yi) — Y

| |
T +—UxgT =5 X
bk
S+—U

Note that p.(X|Y1,...,Yy) is a subpresheaf of p*(X). If X € Px(Smry),represents p.(X|Y1,..., Ys).

Lemma 2.13. Given a universally clopen morphism p: T — S, Y € Px(Smy), with relatively
representable morphisms Zi,...,Z, — Y, for every coproduct decomposition Y ~ Y’ LUY” in
Px(Smy), there is a decomposition

(Y1210, Z0) = pu(Y'| 2L ZD Upu(Y Y, 20, .., Z)
in Py (Smg), where Z! = Z; xy Y.

Proof. First, we reduce the case to k = 0:

(1) Let ¢: p(Y) Up (YY) = p«(Y) be the morphism induced by the inclusions.
(2) Note that p(Y'|Z1,...,Z;) = p«(X) N pu(Y|Z1,. ..., Zg).

(3) Note that p. (YY", Z1,...,Zk) = 0 (YY) N pu(Y|Z1,..., Zk).

(4) Consider the following cartesian square

p*(YI|Zi, ceey lec) Up*(Ylyﬂ, Ziyenn, Zk) R p*(Y’Zh ceey Zk)

|

p«(Y') Up. (YY)

p«(Y)

(5) We just need to show ¢ is an equivalence.
Then we specialize to the case k = 0, and show ¢ is a monomorphism:

(1) p«(Y") Xp, (v) P« (YY) has no sections over nonempty schemes, because Y’ NY"” = in Y.

(2) Hence p«(Y”) %, vy p«(Y]Y") is an initial object of Ps(Smg), which means that ¢ is an
equivalence by the universality of colimits. In particular, ¢ is a monomorphism.

It remains to show that ¢ is objectwisely an effective epimorphism:

(1) Let py: U xgT — U be the morphism parallel to p: T'— S in the evident cartesian square.

(2) Given U € Smg and s € p.(Y)(U), we will decompose U according to these data.

(3) Let U' ={y € U | p;* (x) C s71(Y")}.

(4) Let U” be the complement of U’ in U, and U” = py(s~1(Y")), which is a clopen subset of
U.

(5) The image of the restriction s|yr: U’ — Y is in Y/, according to the construction. Hence
slyr € p«(Y")(U') and we have U — p.(Y”).

(6) s~1(Y") — U" is surjective, according to the construction. Hence s|y7 € p.(Y”')(U’) and we
have U” — p.(Y[Y").
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(7) Combine these coproducts together to define a section
U=U"UU" - p.(Y)Up(Y|Y")
which is a preimage of s by ¢p.
O

Remark 2.14. The proof of the surjectivity is the essential part, where we notice that the decom-
position

p(Y) Upu(Y[Y") = pu(Y)
essentially encodes the decomposition of each section s: U — p,(Y)

U
H

UI UI L U// U//

| | |

P«(Y') — p(Y) Up. (YY) «—— p. (YY)

It
p«(Y)
We may conclude that s: U — p.(Y) is in p.(Y]Y") if and only if the corresponding map U xgT —
X can be lift to U xgT — Y — Y along the inclusion Y < Y. If we let f: Y, — Y collapse Y

to the base point, the right vertical arrow U” — p,(Y|Y”) can be interpreted as the “cross terms"
that should collapse. Therefore, we can see how p(Y'|Y"”) packs the “cross terms".

Example 2.15. Given a universally clopen morphism p: E — B and let Y, Z € Px(Smg), we have
the decomposition

p«(Y U Z) ~p(0) Up. (YY) Up.(Z|Z) Up(Y U Z]Y, Z)

Theorem 2.16. Given a universally clopen morphism p: T — S, there is a unique symmetric
monoidal functor

Pe: Ps(Smr)e — Px(Smg)e
such that
(1) sifted colimits are preserved by pg;
(2) there is a natural equivalence pg (X4 ) =~ p«(X)4 between symmetric monoidal functors;

(3) for every g: Z, — Yy with Y, Z € Px(Smy), the map pg(g) is the composite
- f
Pe(Z) 4 = (g7 (V)4 = pe(Y) 4
by collapsing the part p.(Z|Z \ f~1(Y)) to the base point.
2.3. Multiplicative transfer on motivic spaces.

Proposition 2.17. Given an integral morphism p: T" — S of schemes, Nisnevich and motivic
equivalences are preserved by the functor Pg(Smz) 2% Ps(Smyg).

Here we need to require the morphism to be integral because integral morphisms are direct limits
of finitely presented morphisms. In this way, we can reduce the case to finite morphisms and further
to finite field extension stalkwisely.

Remark 2.18. The condition that p is “integral and universally open” contains the following two
cases:
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(1) p is finite locally free;
(2) p: SpecL — SpecK is induced by an algebraic field extension L/K.

Combine Theorem 2.16 and Proposition 2.17, we have the following theorem.

Theorem 2.19. Let p: T' — S be an integral and universally open morphism. Then there is a
symmetric monoidal functor called multiplicative transfer

P He(T) — He(S)
such that
(1) Sifted colimits is preserved by pg.
(2) p« is extended by pg i.e. pp(Y:) ~ (p.Y)4 for Y € Smg.
(3) If p: S x {n} — S is the trivial projection (we may also write it into a fold map S"" — 9),

then pg is the n-fold smash product.

2.4. Multiplicative transfer on motivic spectra. In this subsection, we first recall the universal
property of stable motivic homotopy categories. Then we use the universal property to extend
multiplicative transfers from unstable motivic homotopy categories to stable motivic homotopy
category.

Definition 2.20. Let X be a scheme and V' — X be an algebraic vector bundle. The motivic
Thom space associated to V' is defined by

Th(V) := V/(V\0) = P(V @ Ak)/P(V) € Ha(S).
Example 2.21. Given a scheme S, Th(A}) = PL.
Lemma 2.22. For any vector bundle V' — S, Th(V) is an invertible object in SH(S).

Theorem 2.23. Let C be a compact generated symmetric monoidal co-category whose tensor
product preserves compact objects and colimits in each variable. Let X € C such that the cyclic
permutation on X ®" is homotopical to the identity for some n > 2. Let K be a collection of simplicial
sets containing filtered simplicial sets. Let D be a symmetric monoidal oco-category admitting K-
indexed colimits and whose tensor product preserves K-indexed colimits in each variable. Then the
localization

¥¥:C—C[X Y
induced a fully faithful embedding
Fun®*(C[X 1], D) — Fun®*(C, D),
whose essentially image consists of functors F' such that F/(X) is invertible.

According to Theorem 2.23 and SH(S) = He(S)[Pg'], we just need to show that pg(Pr') is
invertible. More precisely, the strategy consists of two steps:

(1) Let V.— T be a vector bundle, show that pg (V) — S is a vector bundle.
(2) Show what pg(X/Z) is and prove that pg sends Thom spaces to Thom spaces.

Lemma 2.24. Let p: T — S be a finite étale morphism and V' — T be a vector bundle. The Weil
restriction R,V — S has a canonical vector bundle.

If p: T — S is a finite étale and V' — T is a vector bundle, its Weil restriction R,V — S has a
canonical structure of vector bundle (stalkwisely, it is Example 2.5).
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Definition 2.25. Let p: T'— S be a morphism of schemes, let X € P(Smy), and let Y C X be a
subsheaf. For U € Smyg, let

p«(X||Y)(U) ={s: U xgT — X | s sends a clopen subset covering U to Y'}.
Note that p,(X||Y) C p«(X), and it is in Py, whenever X and Y are.

Proposition 2.26. Given a universally clopen morphism p: T'— S, X € Px(Smry), and a sub-
presheaf Y C X in Px(Smr), there is a natural equivalence

Pe(X/Y) = p.(X)/p.(X][Y)
in Ps(Smg)e.

Proposition 2.27. Let p: T' — S be an integral universally open morphism, let X € Px(Smr),
and let Y C be an open subsheaf. Then there is a natural equivalence

pe(X/Y) = pu(X)/p(X]Y)
in Shv,;s(Smg)s.
Proof. See [BH21, Corollary 3.11]. O

Proposition 2.28. Given a finite étale morphism, p: T'— S, X € Sm7p, and a closed subscheme
Z C X, if the Weil restriction R, X exists, then

X ) o R, X
X\Z"  R,X\R,Z
Proposition 2.29. Given a finite étale morphism p: T — S, a vector bundle V' over T', we have
pe(SY) ~ SRV in H,G(S).

Proposition 2.30. Given a finite étale morphism p: 7' — S, the functor Xoopg: He(T) — SH(S)
has a unique symmetric monoidal extension

pe: SH(T) — SH(S)

Pe(

preserving sifted colimits.

Remark 2.31. Let p: T'— S be finite étale morphism and let E € SH(T). Then we have
pe(E) ~ colim, X Rt $100 (E,)

where E,, is the nth space of E and E ~ colim,X~2"S*E,,.



10 TONGTONG LIANG

3. PROPERTIES AND COHERENCE OF NORMS

In this section, we mainly introduce how the multiplicative norm functors interact with other
operations coherently.

Proposition 3.1 (Composition). Given two universally clopen morphisms f: R — T and g: T' — S,
there is a symmetric monoidal natural equivalence

(9f)e ~ 9o fo: Px(Smpg)e = Ps(Smr)e — Psx(Smg)a.

Hence, the same result holds in H,e (resp. in SH) if f and g are integral and universally open (resp.
are finite étale ).

Proposition 3.2 (Base change). Given a pull-back square of schemes as follows

KN

Ql lp
S’ — S

where p is universally clopen. Let C C Smp be a full subcategory and let X € Px(C)s. Suppose
either of the following assertions is true

(1) f is smooth;
(2) the Weil restriction R,U is a smooth S-scheme for every U € C,

Then there exists a natural equivalence Ex}, : f*pg(X) = gog*(X). In particular, if p is finite étale
(resp. finite locally free ), then there is an equivalence Ex%,: f*pg — qgg” equivalence in SH (resp.
in Ha).

Remark 3.3. By taking adjunction for Exg,: f*pg — qgg”, we have

Exgs: pags = feis
If f is smooth, we also have
Exue: f44e = Pegs

Given a finite locally free morphism p: T" — S and a quasi-projective morphism h: Q — T, we
have the diagram

Q +“— R,Q xsT — R,Q

x s |

rT—" 5

where e is the counit of the adjunction (p*, ps), ¢ and g are the canonical projections, and f = R, (h).
Then we define

. Exz.
Disyy: fugee” — pugue” 5 pohy: QP — QPg
Furthermore, we consider

. « EXge %« D
Disyg: fyqee” —— pggpe” =g hy,

. n EX®*
Disgy: pohs = pogse” —— fiqoe”
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3.1. Categorical encapsulation of motivic norms and their coherence. To organize these
properties and their coherence more efficiently, we introduce the notion of spans.
Definition 3.4. Given a category C with two classes of morphisms L and R such that

e they all contains equivalences,

e the pull-back of any arrow in L (resp. in R) along any arrow in R (resp. in L) is still in L
(resp. in R),

e they are closed under compositions,

we construct a new oo-category Span(C, L, R) whose objects are objects in C and morphisms are of

the form
[ ] (i [ ] i} [ ]

where f € L and g € R. The composition is given by pull-back.

In this subsection, we will construct the functor

SH®: Span(Sch, all, fét) — CAlg(Cateo), S+ SH(S), (U Lrr S) = pef*

such that

e If p, ¢ are composable finite étale maps, then (¢ o p)g =~ gz © pg-
e given a cartesian square

with p finite étale , f* opg ~ qg 0 g*
e coherence of the above equivalences.

The strategy to construct this functor follows the diagram 2 basically, but we still need some
modification: we need to replace Smg by SmQPg. There are two reasons for this modification:

e In the case of smooth quasi-projective schemes, the existence of the Weil restriction is
guaranteed, see Proposition Theorem 2.7. In this way, we can restrict the case to py :
SmQP, — SmQPg, and simplify the whole machinery.

e There is no harm, since Shvyis(SmQPg) ~ Shvyis(Smg), which means that we can still get
H(S) from Px(Smg) by motivic localization. In other words, H(S) is generated by SmQPg¢
under sifted colimits.

Based on these observations, the construction follows the next process:
SmQP5+ ~ PE(Smes). ~ H.(S) ~ SH(S)
More precisely,

(1) The assignment S — SmQPg, forms a functor Span(Sch, all, fét) — CAlg(Caty);

(2) By sifted cocompletion, we can extend thfe previous one to S — Px(SmQPg)e, which forms
a functor Span(Sch, all, fét) — CAlg(Catsift);

(3) Show the assignment preserves motivic equivalences, so we can pass to
H(—)E: Span(Sch, all, fét) — CAlgCAlg(Catsil), S H(S).
(4) Show the assignment preserves Thom spaces so that we can pass to

SH(—)Z: Span(Sch, all, fét) — CAlgCAlg(Catsl), S — SH(S).
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The non-trivial ones are the last two steps. Bachmann and Hoyois prove them in a very smart and
elegant way in [BH21, §6.1]. Their proof is basically using categorical machinery.

Beyond the construction SH®, we can generalized SH® to define a notion describing a family of
symmetric monoidal co-categories parameterized by schemes with multiplicative transfers associated
to finite étale morphisms.

Let S be a scheme. We write C Cgy Schg if C is a full subcategory of Schg that contains S and
is closed under finite coproducts and finite étale extensions. We denote fét the class of finite étale
morphisms.

Definition 3.5 (Normed oco-category). Let S be a scheme and C Cget Schg. A normed co-category
over C is a functor

A: Span(C, all, fét) — Cateoo, (X Ly?2 Z) = pef”,

preserving finite products. A is said to be presentably normed if:
(1) A(X) is presentable for every X € C;
(2) h*: A(X) = A(Y) has a left adjoint hy for every finite étale morphism h: Y — X;
(3) f*: A(X) — A(Y) preserves colimits for every morphism f:Y — X;
(4) for every pull-back square
v 2y
h’l J{h
X' — X
where h is a finite étale morphism, there an equivalence
Ex h;#g* = [Thy: A(YY) = A(X')
as an exchange transformation;
(5) pe: A(Y) — A(Z) preserves sifted colimits for every finite étale morphism p: Y — Z;
(6) for every diagram
U+ RU x5 T —2= R,U
S |
T—>2 5
where p and h are finite étale morphisms, there exists an equivalence
Disyg: frqee”™ — pohy
as the distributivity transformation .
3.2. The category of normed motivic spectra. Recall that if A: C — Caty is a functor

classifying a cocartesian fibration p: £ — C, a section of A is a section s: C — & of p. More
specifically, for any ¢ € C, s(c) is an object in A(c). We write

/A = &£ and Sect(A) = Fune(C, &)

Definition 3.6. Let S € Sch and C Cy¢; Schg. A normed spectrum over C is a section of SH® over
Span(C, all, fét) that is cocartesian over C°P. An incoherent normed spectrum over C is a section of
hSH® over Span(C, all, fét) that is cocartesian over C°P.

The full subcategory of normed spectra over C is denoted by NAlg.(SH) C Sect(SH?® | Span(C, all, fét)).
The frequent choices of C are Smg, Schg and FEtg. For convenience, we write NAlgg  (SH(S))
instead of NAlgg,, (SH).
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Roughly speaking, a normed spectrum FE over C is to assign Fx € SH(X) for any X € C

and pg f*Ex — Ez in SH(Z) for any span X Ly % 7 Note that by full-back, we have that
f*Ey = Ex naturally. Therefore, the extra data for an (incoherent) normed structure is a spectrum
E € Sch(S) equipped with a parametrized multiplicative transfer p,: pgEy — Ey for any finite
étale morphism p: V' — U in C such that the following coherence conditions are satisfied.

Condition 3.7 (Coherence conditions for incoherent normed spectra). (1) ppisan equivalence
when p is the identity;

(2) The square with two arbitrary composable finite étale morphisms g: W — V and p: V — U
inC
PRM
PedsEw — pgEy

=| I

(re)eEw —— Eu
commutes up to homotopy.
(3) for every pull-back square
Vi,V
ql lp
U’ — U
in C where p is a finite étale morphism, the following diagram

* o #
f*re By ———— f*Ey

|

129" Ev =~
q® EV’ M—q) EU’

commutes up to homotopy.

In particular, these coherence conditions imply that y,: pg Eyy — Ey is homotopically equivariant
for the action of Aut(V/U) on pgEy. Thus we have
tp: (PoEV)hauw(viv) — Eu
Basically, the multiplicative coherence data for a normed spectrum over C Cgg Smg is parametrized
by C N FEtg.
Proposition 3.8. Suppose S is a scheme and C Cgg Schg.

(1) The oo-category NAlg,(SH) — SH(S) admits all finite limits and colimits. If C is a small
oo-category, then NAlg,(S#H) is presentable.

(2) The forgetful functor NAlg,(SH) — SH(S) is conservative and preserves sifted colimits and
finite limits. If C C Smg, it preserves limits and hence is both monadic.

Proof. See [BH21, Proposition 7.6]. O

Remark 3.9. The forgetful functor NAlg(SH) — SH(S) has a left adjoint NSym, : SH(S) —
NAlg,(SH). When C = Smg or C = FEtg, we have that

N E) = coli E
Syme(E) ggggsf#p@( Y)
pY =X
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where the indexing oo-category is the source of the cartesian fibration classified by C°? — S,
X — FEt%. Therefore the motivic norm structure on a spectrum E € SH(S) can be exhibited as

NAlg,(E) — E

The monadic argument can be found in [BH21, Section 7.1,16.4]. Motivated by this, Bachmann,
Elmanto and Heller define the notion of motivic colimits [BEH21].
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4. NORMS IN EQUIVARIANT HOMOTOPY THEORY

4.1. Unstable G-equivariant homotopy theory. Let f: H — K be a group homomorphism.
Then we have
fir Spcg — Spcg
X — KxgX
e Speg — Speg
X +—— Map(K,X)H
and they forms adjoint functors

fi
— 3

Spey Speg
~ —
f*
f*
—
Spcy Spcy
—
f
where f* is the pull-back of the group action:

Fun(BK, Spc) °B1, Fun(BH, Spc).
We may called fi the induction functor along f and f, the coinduction functor along f.

4.2. Set-up for equivariant stable homotopy theory. Let G be a group, we let BG be the
associated oo-groupoid.

Let Spcg be the (1-)category of G-spaces and let W, be the class of G-equivariant weak homotopy
equivalence. Then we have

SpegWh] ~ Fun(BG, Spe)

where the LHS should be considered as the homotopy coherent nerve of the hammock localization
of Spc with respect to Wi.

However, the problem is that since the categorical homotopy fixed point functor is not a homo-
topical functor, we may loss the information of the homotopy types of X for all non-trivial H C G.
To fix this issue, we need to define a more suitable class of weak equivalences.

Definition 4.1. Let W C Spc; be the class of morphisms f: X — Y such that f7: X — Y is
a G-weak homotopy equivalence for all H C G.

On the other hand, we need to consider how to modify BG, namely we need to find a better
oo-category to parameterize spaces for G-equivariant homotopy theory.

Definition 4.2. Let Og be the category called Elmendorf orbit category with
e objects: G/H where H is a closed subgroup;
e morphisms: G-equivariant continuous functors. Specifically, there exists a G/Hy — G/ Ho
if and only if gH1g~! C Hy for some g € G (and the morphism is given by [z] — [gzg™]).

In particular, Spcg ~ F un((’)gp,Spc) as a homotopy cocompletion, since a G-space is a colimit
of G-orbits. An alternative model for Spc is Px(Fing) where Fing is the category of finite discrete
G-sets.

When passing to stable world, we have several strategies

e Borel G-spectra: Sp"® := Fun(BG,Sp) is called the stable co-category of Borel G-
spectral, which can be obtained by do S!-stabilization on Fun(BG, Spc);

e Naive G-spectra: Spg := Fun(OZ,Sp) is the stable oo-category of naive G-spectra,
which can be obtained by S!-stabilization on Fun(Og, Spc).
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e Genuine G-spectra: Sp®:= Fun®(Span™ (Fing), Sp) is the stable co-category of genuine
G-spectra, where Span™ (Fing) is the Burnside category and a genuine G-spectra is also
called a spectral Mackey functor.

Definition 4.3. Let Span(Fing) = Span(Fing,all, all). The space of the morphism space Homgpan(zine) (X, Y)
is a commutative monoid whose addition is given by coproducts

/ N, ]_w[
\ e |

The Burnside category Span+(]-"ing) is obtained from Span(Fing), which is called effective
Burnside category by doing group completion on the mapping commutative monoid.

The extra data in the comparison between naive G-spectra and genuine G-spectra is about
transfers in equivariant homotopy theory. We will see how these transfers are actually from transfers
in representation theory by using the following definition of genuine G-spectra.

Definition 4.4. Let V be a G-representation and SV be the representation sphere by one-point
compactification. Then the stable co-category of genuine G-spectra is obtained by

G -V
Sp” = Spcal{S™" Iverep(c)]
namely it is given by the formal inversion with respect to all G-representation spheres.
Remark 4.5. If G is a finite group, then its regular representation R(G) is the direct sum of all
the irreducible G-representations. Then by the semi-simple property of G-modules, we have that
SpY = SpegSRE).
Note that SVOW = gV A W,
Now we recall some transfers in representation theory. Let H C G be a subgroup, then we have

a pair of adjoint functors
Ind$
>
Rep(H) Rep(G)
—
Resg

Resg
— 3
Rep(G) Rep(H)
Y —
Coind§

Then we may upgrade them to
Indg

— A
SpCH SpCG
—
Resg
Resg
3
Speg Spey
e

Coindg
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and the unstable norm is given by

Coind€

Spcy N Speg

(4] o

Spcre N—,Cj) Speg,

By stabilization with respect to all representation spheres, we eventually have the equivariant stable
norm functor Ng.
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APPENDIX A. APPENDIX: (GALOIS DESCENT

A.1. Galois descent for vector spaces. Let L/K be a finite Galois extension with Galois group
G. By tensor products, we have

L®g—: Vecty — Vecty
V — LgV

Question A.1. Given a L-vector space W, can we find a K-vector space V such that W & LQg V'
as L-vector spaces?

Notice that there is a G-action on L @k V by
g-(a®v)=(g9g-a)®v, Vg G

and this G-action is compatible with its K-vector space structure, since g is a K-linear map. The
following notion encapsulates these structures

Definition A.2. Let W be a L-vector space and g € G. An additive functionp: W — W is said
to be g-linear if
v(aw) = g(a)p(w), Yv € W, a € L.
A G-structure on W is a set of functions ¢,: W — W such that ¢, is a g-linear function for all
g € G and @4, 0@y, = Qg,4,- We may also say G acts semilinearly on V.

Example A.3. Given a K-vector space V, L ® ¢ V has a standard G-structure
g:a®v— gla)®v.

Proposition A.4. A L-vector space W is of the form W = L ®x V for some K-vector space V if
and only if L has G-structure.

Roughly speaking, given a L-vector space W with G-structure, we have
LeogWé=w

where WY is the space of G-fixed points and it is a K-vector space in nature.
Let Modg be the category of L-vector space with G-structure. Proposition A.4 is saying that

Vect,, = Modg
A.2. Descent data for quasi-coherent sheaves.

Definition A.5. Let S be a scheme. Let {f;: S; — S}ier be a family of morphisms. A descent
datum {F;, p;;) for quasi-coherent sheaves with respect to the given family is given by a quasi-
coherent sheaf F; on S; for each i € I, an isomorphism of Og,xs,-modules:

pij: ProFi — pri F;
for each pair (i, j) € I?, where the morphisms are given by following cartesian square
Si x5S, 2 S
) |
Sj — S
such that the cocycle condition for Og; x 45, x 55,-modules

PI(o Pik

pry Fi prs F,

pr&% /pr’fa o

pri F;
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given by
Si XS Sj XS Sk
Proi pr‘oz PTri2
SiXSSj SXSSk SjXSSk
pro pry / \ pro pry
S; S; S S, S

where the copies of S; (resp. S}, resp. Sy) are identified.

Definition A.6. Let S be a scheme and {f: S; — S}icsr be a family of scheme morphisms. Let F
be an Og-module.

e The identity morphism {id: S — S} with its natural descent datum is called the trivial
descent.

e The pull-back of the trivial descent along {f: S; — S} i.e. {F|s,,can} is the canonical
descent datum;

e a descent data {Fj, ¢;j} on {f;: S; — S} is called an effective descent datum if it is
isomorphic to a canonical descent datum for some Og-module F.

Proposition A.7. Let F := {f;: S; — S} be a family of morphisms.

e If F'is an open covering, then any descent datum is effective.

o If f; is flat for any ¢ € I and for any affine open set V' C S, there exists a finite subset
J C I with affine open subsets V; C S; for any j such that Ujc s f;(V;) =V (i.e. Fisa fpqc
covering), then any descent datum is effective.

A.3. Galois descent data for schemes. Let L/K be a finite Galois extension with Galois group
G. In particular, the morphism {SpecL — SpecK} is a fpqc covering and an étale covering at the
same time. Now we try to adapt Definition A.5 to the case of Galois extensions.

Lemma A.8. Let L, be a L-algebra given by o: L — L € G. Then

Lok L= [] Lo, 2@y (z0(y))s
oceG

as L-algebras. Let G act on [[,»Ls by g (25)e = (Zog)s for any g € G. Then we have L =
(Iyeq Lo)© as K-algebras. Similarly, L@ x®x L = (o1 eaxa L given by a@b®c — (ao (b)7(c))o,r-

For any scheme X over K, we have Xyg, 1 = HaeG X1, . Forany o € G, we let 0*: Schy, — Schy,
be the functor induced by ¢*: SpecL — SpecL in the following way:

(Y — SpecL) — (Y — SpecL 7, SpecL).
In particular, we let T, : X, — X1, be id x ¢* which is coincident with o*|x, : X, — X2
Then pry: Xrg,r — X corresponds to ], ca XL L X and pry @ Xpg,r — X corre-

sponds to [[, o X1 H—> Xr. Similarly, we can write down prgy, prys, prop from H(U,T)EGXG X —

2This is abuse of notation, because we hope to present it as a morphism between schemes instead of a part of the
functor o*.



20 TONGTONG LIANG

ngg X1, by
(o,7) =0
(o,7)—>T
(o,7)— o1
respectively. Then we can define the Galois descent for quasi-coherent sheaves.

Definition A.9. Let X be a scheme over K. Then a Galois descent datum (along X; — X) is
a quasi-coherent sheaf F on X with a family of isomorphisms

{90 T5F = Floea
satisfying the cocycle condition

0o 0 (Trpr) = por for all o,7 € G.

g

Theorem A.10. Let X be a scheme over K. Then the category of quasi-coherent sheaves on X is
isomorphic to the category of Galois descent data along X — X.

This theorem is true due to the effectiveness of descent data along the fpqc covering SpecL —
SpecK.

Any sheaf of algebra A over S can be realized as an relative affine scheme over S i.e. an affine
morphism® f: SpecA — S such that for any open subset U C S, A(U) = I'(f~1(U); SpecA).
Therefore, descent data for relatively affine schemes can be encoded in descent data for quasi-
coherent sheaves. Similarly, we also have relative projective construction Proj for sheaves of graded
algebras over S, which means that descent data for relatively projective schemes can also be encoded
in descent data for quasi-coherent sheaves.

Therefore, we can define descent data for schemes in an analogous way.

Definition A.11. A Galois descent datum along L/ K is a L-scheme V with a family of isomorphism
{po: 0"V — V},eq satistying the following cocycle condition: ¢, o (6%p;) = sy for all o,7 € G
i.e. the following diagram commutes

(o7)*V Lot v

U*SDT\) %

o*V

At least we know that if V' is an affine or projective L-scheme, the Galois descent is effective.
Moreover, if the descent datum on V is effective, then any clopen subsets of V' with the associated
restriction descent datum is also effective.

Theorem A.12. Let L/K be a finite Galois extension with Galois group G. Then any Galois
descent datum (V, {ps}oecq) is effective if V' is quasi-projective.

3A morphism f: X — Y between scheme is affine if for any affine open subscheme U C Y, f~(U) is an affine
open subscheme in X.
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