
MOTIVIC MULTIPLICATIVE STRUCTURES
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Abstract. This is a reading proposal with topics on motivic multiplicative structures and infinite
loop spaces.
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1. Overview of motivic multiplicative structure

The following diagram presents the comparison between classical multiplicative structures in
terms of operads and motivic multiplicative structures in terms of multiplicative transfers.

E∞-structure
E∞-operad action

H∞-structure
E∞-operad homotopy action

power operations

multiplicative coherence data

intrinsic symmetrySpan(Fin, inj, all)
universal commutative monoid

Span(Sch, all, fét)
universal normed category

motivic normed structure

motivic power operations

motivic extended powers

encoded in

presented as presented as

parametrize parametrize

encoded in

pass to homotopy

encoded in

pass to cohomology

take motivic colimits

pass to cohomology

Figure 1. Multiplicative structures in different contexts

Remark 1.1. Note that

Fun(Span(Fin, inj, all), C) ≃ Fun(Fin∗, C),
where C is an ∞-category with finite products [BH21, Proposition C.1.]. Thus we may conclude that
Span(Fin, inj, all) is the universal commutative monoid. The process from Fin∗ to E∞-structure is
subtle. More precisely, we should take the nerve N(Fin∗) of Fin∗. I think should we regard N(Fin∗)
as a kind of universal category of operators, and we may produce an E∞-operad from this perspective,
but I do not know how to do it rigorously. The key point is that there should a translation between
the ordinary-categorically operadic formulation and the ∞-categorical formulation for multiplicative
structure. Moreover, may we need to adapt the notion of categories of operators to algebraic
geometry from this perspective.
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2. Norms in motivic stable homotopy theory

In this chapter, we assume that all the based schemes are quasi-compact and quasi-separated (we
need this assumption, otherwise some categories over S are not compactly generated). Let SmS be
the category of smooth schemes of finite type over S.

Theorem 2.1. Let p : T → S be an integral and universally open morphism. Then there is a
symmetric monoidal functor called multiplicative transfer

p⊗ : H•(T ) → H•(S)

such that

(1) Sifted colimits is preserved by p⊗.
(2) p∗ is extended by p⊗ i.e. p⊗(Y+) ≃ (p∗Y )+ for Y ∈ SmS .
(3) If p : S × {n} → S is the trivial projection (we may also write it into a fold map S⊔n → S),

then p⊗ is the n-fold smash product.
If p is a finite étale , then we can extend p⊗ to stable motivic homotopy categories

p⊗ : SH(T ) → SH(S).

This section is devoted to sketch the construction of this multiplicative transfers.
First, we recall the construction of stable motivic homotopy category SH(S) over S.

SmS

PΣ(SmS)

H(S)

SmS+

PΣ(SmS+)≃ PΣ(SmS)•

H•(S)

SH(S) := H•(S)[P
−1
S ]

sifted cocompletion sifted cocompletion

motivic localization motivic localization

P1-stabilization Σ∞
P1

X 󰀁→ X ⊔ S

add based points

add based points

add based points

Figure 2. The construction of stable motivic homotopy category

Remark 2.2. The stable ∞-category SH(S) is the (homotopy) limit of the tower

· · · → H•(S)
ΩA1

−−→ H•(S)
ΩA1

−−→ H•(S).

The construction of p⊗ is based on this process:
• unbased presheaves level: Write down p∗ : PΣ(SmT ) → PΣ(SmS);
• based presheaves level: Write down p⊗ : PΣ(SmT )• → PΣ(SmS)•
• motivic spaces level: p⊗ preserves motivic equivalences for good morphisms
• motivic spectra level: p⊗ preserves motivic Thom spaces for some family of morphisms.
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2.1. Multiplicative transfer on unbased presheaves. In this subsection, we discuss the notion
of Weil restrictions, which will be used considering the stabilizations. Basically, we expect that if
V → X is an algebraic vector bundle in SmT , and p : T → S is a good morphism (we will see what
“good morpihsm” means), then p⊗(V ) → p⊗(X) is also a vector bundle. More precisely, both p⊗(V )
and p⊗(X) are represented by smooth S-schemes.

Definition 2.3. Let f : Q → R be a morphism of scheme. The pushforward

f∗ : P(SchQ) → P(SchR)

is defined by
f∗F (X) := F (X ×R Q), X ∈ SmR, F ∈ P(SmQ)

If the F is represented by X ∈ SchQ and f∗X is representable in SchR, then the representative
R-scheme is denoted by RfX called Weil restriction of X along f .

Example 2.4. Let L/K be a finite Galois extension with Galois group G, let V ∈ SmL . The Weil
restriction of X along L/K should be a pair (X̃,ϕ) where

• X̃ ∈ SmK ;
• ϕ : X̃L → X a morphism of smooth schemes.

such that for any smooth scheme T over K and f : TL → X, there exists a unique smooth morphism
f̃ : T → X such that ϕ ◦ (f̃)L = f , namely

X̃

T X̃L

TL X

∃! f̃

ϕ

f

(f̃)L

Now we let X be a smooth quasi-projective scheme over L. Let

NmG(X) :=
󰁜

σ∈G
σ∗X

Then, for σ ∈ Gal(L/K), there exists an isomorphism ϕσ : NmG(X) ≃ NmG(X) over Spec(L) given
by id × σ∗, such that (NmG(X), {ϕσ}σ∈Gal(L/K)) is an effective descent datum, see Appendix A,
Theorem A.12. Then we let X̃ ∈ SmK such that

(NmG(X), {ϕσ}σ∈Gal(L/K)) ∼ X̃.

In particular, X̃L
∼= NmG(X), according to the definition of effective descent data, and

(f̃)L =
󰁜

σ

σ∗f

which corresponds to a morphism f̃ : T → X̃ uniquely1

Example 2.5. Given a finite field extension L/K of order d. If we specify a K-basis {e1, · · · , ed}
of L, then for an affine L-space An

L = SpecL[x1, · · · , xn], the Weil restriction RL/K(An
L) is given by

SpecK[yij ] = And
K

Similarly, we have an analogous result for projective spaces.

1It is because the essential image of the fully faithful functor from SmK to the category of Galois descent data
along L/K is exactly the category of effective Galois descent data.
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Proposition 2.6. If V admits has the Weil restriction, then either a Zariski-open L-subscheme of
V or a closed L-subscheme has its Weil restriction.

Proof. See [Wei82, Section 1.3]. □

Theorem 2.7. Let p : T → S be a finite locally free morphism between schemes, and X a quasi-
projective T -scheme. Then the Weil restriction RpX exists and is quasi-projective over S.

Proof. See [BLR90, Section 7.6, Theorem 4]. □

Remark 2.8. We need to require that the morphism should be finite locally free, because we need
to basis affine-locally, as we do in Example 2.5.

Proposition 2.9. Let T be an arbitrary scheme and X ∈ SmT . Suppose there is a finite locally
free morphism p : T → S. RpX is smooth over S whenever the Weil restriction exists.

2.2. Multiplicative transfer on based presheaves. Extend p∗ from non-pointed case to pointed
case at the level of presheaves. More specifically, we need to extend it to a functor PΣ(SmT )•

p⊗−−→
PΣ(SmS)• such that the requirements are satisfied.

Note that PΣ(SmT )• is generated under sifted colimits by objects of the form X+. However, there
is an obstruction on the way to the based cases: some maps in PΣ(Sm)T may not come from the
functor X 󰀁→ X+. For example, f : (X ⊔ Y )+ → X+ that collapse Y to the base point cannot come
from any map X ⊔ Y → X. Therefore, the key point is how we define such p∗(X ⊔ Y )+ → p∗(X)+.

Here we specialize the case to the case where X,Y ∈ SmT . Then for any U ∈ SmS , we decode
the items:

(1) p∗(X ⊔ Y )+(U) = SmT (U ×S T,X ⊔ Y )+;
(2) p∗(X)+(U) = SmT (U ×S T,X)+;

For any s : U ×S T → X ⊔ Y , how should we define p⊗(f)(s) ∈ p∗(X)+? Notice that we should
collapse the part s|s−1(Y ) : s

−1(Y ) → Y according to the definition of f .

U ×S T X ⊔ Y

U ×S T − s−1(Y ) X

s

collapse the “cross terms"

However, the bottom arrow is not an element in p∗(X)(U) evidently, which is regarded as a “cross
term" in p∗(X)(U). To make it more clear, we need to separate s|s−1(Y ) : s−1(Y ) → Y from
s : U ×S T → X ⊔ Y in p∗(X ⊔ Y )+(U) by decomposing the presheaf p∗(X ⊔ Y )+.

Definition 2.10. A relatively representable morphism is a morphism Y → X in P(SmT ) is
such that the presheaf V ×X Y is representable whenever V → X for some V ∈ SmT .

Lemma 2.11. For any coproduct decomposition X = X1 ⊔X2 in PΣ(SmS), the natural inclusion
X1 ↩→ X is relative representable.

Proof. Let ji : Xi → X be the natural inclusion for each i = 1, 2. For any Y ∈ SmS , by the
universality of colimits, we have Y = Y1 ⊔ Y2, where

Yi = Y ×X Xi for i = 1, 2

Recall that O(Y ) = HomSmS
(Y,A1). Then we can decompose the ring of functions of Y into

HomSmS
(Y,A1) = HomSmS

(Y1 ⊔ Y2,A
1) = HomSmS

(Y1,A
1)×HomSmS

(Y2,A
1)

By reducing the case to affine cases, we can decompose Y into two clopen subsets that represents
Y1 and Y2 respectively. □
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Construction 2.12. Let Y1, . . . , Yk → X be relatively representable morphisms. For U ∈ SmS , let

p∗(X|Y1, . . . , Yk)(U) := {s : U ×S T → X | s−1(Yi) → U is surjective for all i}
where s−1(Yi) → U is given by the middle vertical composition of arrows in the following diagram.

s−1(Yi) Yi

T U ×S T X

S U

p pU

s

Note that p∗(X|Y1, . . . , Yk) is a subpresheaf of p∗(X). If X ∈ PΣ(SmT ),represents p∗(X|Y1, . . . , Yk).

Lemma 2.13. Given a universally clopen morphism p : T → S, Y ∈ PΣ(SmT ), with relatively
representable morphisms Z1, . . . , Zk → Y , for every coproduct decomposition Y ≃ Y ′ ⊔ Y ′′ in
PΣ(SmT ), there is a decomposition

p∗(Y |Z1, . . . , Zk) ≃ p∗(Y
′|Z ′

1, . . . , Z
′
k) ⊔ p∗(Y |Y ′′, Z1, . . . , Zk)

in PΣ(SmS), where Z ′
i = Zi ×Y Y ′.

Proof. First, we reduce the case to k = 0:

(1) Let φ : p∗(Y
′) ⊔ p∗(Y |Y ′′) → p∗(Y ) be the morphism induced by the inclusions.

(2) Note that p∗(Y
′|Z ′

1, . . . , Z
′
k) = p∗(X

′) ∩ p∗(Y |Z1, . . . , Zk).
(3) Note that p∗(Y |Y ′′, Z1, . . . , Zk) = p∗(Y |Y ′′) ∩ p∗(Y |Z1, . . . , Zk).
(4) Consider the following cartesian square

p∗(Y
′|Z ′

1, . . . , Z
′
k) ⊔ p∗(Y |Y ′′, Z1, . . . , Zk) p∗(Y |Z1, . . . , Zk)

p∗(Y
′) ⊔ p∗(Y |Y ′′) p∗(Y )

φ

(5) We just need to show φ is an equivalence.
Then we specialize to the case k = 0, and show φ is a monomorphism:

(1) p∗(Y
′)×p∗(Y ) p∗(Y |Y ′′) has no sections over nonempty schemes, because Y ′ ∩ Y ′′ = ∅ in Y .

(2) Hence p∗(Y
′) ×p∗(Y ) p∗(Y |Y ′′) is an initial object of PΣ(SmS), which means that φ is an

equivalence by the universality of colimits. In particular, φ is a monomorphism.
It remains to show that φ is objectwisely an effective epimorphism:

(1) Let pU : U ×S T → U be the morphism parallel to p : T → S in the evident cartesian square.
(2) Given U ∈ SmS and s ∈ p∗(Y )(U), we will decompose U according to these data.

(3) Let U ′ = {y ∈ U | p−1
U (x) ⊂ s−1(Y ′)}.

(4) Let U ′′ be the complement of U ′ in U , and U ′′ = pU (s
−1(Y ′′)), which is a clopen subset of

U .
(5) The image of the restriction s|U ′ : U ′ → Y is in Y ′, according to the construction. Hence

s|U ′ ∈ p∗(Y
′)(U ′) and we have U ′ → p∗(Y

′).
(6) s−1(Y ′′) → U ′′ is surjective, according to the construction. Hence s|U ′ ∈ p∗(Y

′)(U ′) and we
have U ′′ → p∗(Y |Y ′′).



MOTIVIC MULTIPLICATIVE STRUCTURES 7

(7) Combine these coproducts together to define a section

U = U ′ ⊔ U ′′ → p∗(Y
′) ⊔ p∗(Y |Y ′′)

which is a preimage of s by φU .
□

Remark 2.14. The proof of the surjectivity is the essential part, where we notice that the decom-
position

p∗(Y
′) ⊔ p∗(Y |Y ′′) ≃ p∗(Y )

essentially encodes the decomposition of each section s : U → p∗(Y )

U

U ′ U ′ ⊔ U ′′ U ′′

p∗(Y
′) p∗(Y

′) ⊔ p∗(Y |Y ′′) p∗(Y |Y ′′)

p∗(Y )

φ

We may conclude that s : U → p∗(Y ) is in p∗(Y |Y ′′) if and only if the corresponding map U ×S T →
X can be lift to U ×S T → Y → Y ′′ along the inclusion Y ′′ ↩→ Y . If we let f : Y+ → Y ′

+ collapse Y ′′

to the base point, the right vertical arrow U ′′ → p∗(Y |Y ′′) can be interpreted as the “cross terms"
that should collapse. Therefore, we can see how p(Y |Y ′′) packs the “cross terms".

Example 2.15. Given a universally clopen morphism p : E → B and let Y, Z ∈ PΣ(SmE), we have
the decomposition

p∗(Y ⊔ Z) ≃ p∗(∅) ⊔ p∗(Y |Y ) ⊔ p∗(Z|Z) ⊔ p∗(Y ⊔ Z|Y, Z)

Theorem 2.16. Given a universally clopen morphism p : T → S, there is a unique symmetric
monoidal functor

p⊗ : PΣ(SmT )• → PΣ(SmS)•

such that

(1) sifted colimits are preserved by p⊗;
(2) there is a natural equivalence p⊗(X+) ≃ p∗(X)+ between symmetric monoidal functors;
(3) for every g : Z+ → Y+ with Y, Z ∈ PΣ(SmT ), the map p⊗(g) is the composite

p∗(Z)+ → p∗(g
−1(Y ))+

f−→ p∗(Y )+

by collapsing the part p∗(Z|Z \ f−1(Y )) to the base point.

2.3. Multiplicative transfer on motivic spaces.

Proposition 2.17. Given an integral morphism p : T → S of schemes, Nisnevich and motivic
equivalences are preserved by the functor PΣ(SmT )

p∗−→ PΣ(SmS).

Here we need to require the morphism to be integral because integral morphisms are direct limits
of finitely presented morphisms. In this way, we can reduce the case to finite morphisms and further
to finite field extension stalkwisely.

Remark 2.18. The condition that p is “integral and universally open” contains the following two
cases:
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(1) p is finite locally free;
(2) p : SpecL → SpecK is induced by an algebraic field extension L/K.

Combine Theorem 2.16 and Proposition 2.17, we have the following theorem.

Theorem 2.19. Let p : T → S be an integral and universally open morphism. Then there is a
symmetric monoidal functor called multiplicative transfer

p⊗ : H•(T ) → H•(S)

such that

(1) Sifted colimits is preserved by p⊗.
(2) p∗ is extended by p⊗ i.e. p⊗(Y+) ≃ (p∗Y )+ for Y ∈ SmS .
(3) If p : S × {n} → S is the trivial projection (we may also write it into a fold map S⊔n → S),

then p⊗ is the n-fold smash product.

2.4. Multiplicative transfer on motivic spectra. In this subsection, we first recall the universal
property of stable motivic homotopy categories. Then we use the universal property to extend
multiplicative transfers from unstable motivic homotopy categories to stable motivic homotopy
category.

Definition 2.20. Let X be a scheme and V → X be an algebraic vector bundle. The motivic
Thom space associated to V is defined by

Th(V ) := V/(V \ 0) ≃ P(V ⊕ A1
X)/P(V ) ∈ H•(S).

Example 2.21. Given a scheme S, Th(A1
S) = P1

S .

Lemma 2.22. For any vector bundle V → S, Th(V ) is an invertible object in SH(S).

Theorem 2.23. Let C be a compact generated symmetric monoidal ∞-category whose tensor
product preserves compact objects and colimits in each variable. Let X ∈ C such that the cyclic
permutation on X⊗n is homotopical to the identity for some n ≥ 2. Let K be a collection of simplicial
sets containing filtered simplicial sets. Let D be a symmetric monoidal ∞-category admitting K-
indexed colimits and whose tensor product preserves K-indexed colimits in each variable. Then the
localization

Σ∞
X : C → C[X−1]

induced a fully faithful embedding

Fun⊗,K(C[X−1],D) ↩→ Fun⊗,K(C,D),

whose essentially image consists of functors F such that F (X) is invertible.

According to Theorem 2.23 and SH(S) = H•(S)[P
−1
S ], we just need to show that p⊗(P

−1
T ) is

invertible. More precisely, the strategy consists of two steps:

(1) Let V → T be a vector bundle, show that p⊗(V ) → S is a vector bundle.
(2) Show what p⊗(X/Z) is and prove that p⊗ sends Thom spaces to Thom spaces.

Lemma 2.24. Let p : T → S be a finite étale morphism and V → T be a vector bundle. The Weil
restriction RpV → S has a canonical vector bundle.

If p : T → S is a finite étale and V → T is a vector bundle, its Weil restriction RpV → S has a
canonical structure of vector bundle (stalkwisely, it is Example 2.5).
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Definition 2.25. Let p : T → S be a morphism of schemes, let X ∈ P(SmT ), and let Y ⊂ X be a
subsheaf. For U ∈ SmS , let

p∗(X||Y )(U) = {s : U ×S T → X | s sends a clopen subset covering U to Y }.
Note that p∗(X||Y ) ⊂ p∗(X), and it is in PΣ whenever X and Y are.

Proposition 2.26. Given a universally clopen morphism p : T → S, X ∈ PΣ(SmT ), and a sub-
presheaf Y ⊂ X in PΣ(SmT ), there is a natural equivalence

p⊗(X/Y ) ≃ p∗(X)/p∗(X||Y )

in PΣ(SmS)•.

Proposition 2.27. Let p : T → S be an integral universally open morphism, let X ∈ PΣ(SmT ),
and let Y ⊂ be an open subsheaf. Then there is a natural equivalence

p⊗(X/Y ) ≃ p∗(X)/p∗(X|Y )

in Shvnis(SmS)•.

Proof. See [BH21, Corollary 3.11]. □
Proposition 2.28. Given a finite étale morphism, p : T → S, X ∈ SmT , and a closed subscheme
Z ⊂ X, if the Weil restriction RpX exists, then

p⊗(
X

X \ Z ) ≃ RpX

RpX \ RpZ

Proposition 2.29. Given a finite étale morphism p : T → S, a vector bundle V over T , we have
p⊗(S

V ) ≃ SRpV in H•(S).

Proposition 2.30. Given a finite étale morphism p : T → S, the functor Σ∞p⊗ : H•(T ) → SH(S)
has a unique symmetric monoidal extension

p⊗ : SH(T ) → SH(S)

preserving sifted colimits.

Remark 2.31. Let p : T → S be finite étale morphism and let E ∈ SH(T ). Then we have

p⊗(E) ≃ colimnΣ
−RpAn

Σ∞p⊗(En)

where En is the nth space of E and E ≃ colimnΣ
−An

Σ∞En.
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3. Properties and coherence of norms

In this section, we mainly introduce how the multiplicative norm functors interact with other
operations coherently.

Proposition 3.1 (Composition). Given two universally clopen morphisms f : R → T and g : T → S,
there is a symmetric monoidal natural equivalence

(gf)⊗ ≃ g⊗f⊗ : PΣ(SmR)• → PΣ(SmT )• → PΣ(SmS)•.

Hence, the same result holds in H• (resp. in SH) if f and g are integral and universally open (resp.
are finite étale ).

Proposition 3.2 (Base change). Given a pull-back square of schemes as follows

T ′ T

S′ S

g

q p

f

where p is universally clopen. Let C ⊂ SmT be a full subcategory and let X ∈ PΣ(C)•. Suppose
either of the following assertions is true

(1) f is smooth;
(2) the Weil restriction RpU is a smooth S-scheme for every U ∈ C,

Then there exists a natural equivalence Ex∗⊗ : f∗p⊗(X) → q⊗g
∗(X). In particular, if p is finite étale

(resp. finite locally free ), then there is an equivalence Ex∗⊗ : f∗p⊗ → q⊗g
∗ equivalence in SH (resp.

in H•).

Remark 3.3. By taking adjunction for Ex∗⊗ : f∗p⊗ → q⊗g
∗, we have

Ex⊗∗ : p⊗g∗ → f∗q⊗

If f is smooth, we also have

Ex#⊗ : f#q⊗ → p⊗g#

Given a finite locally free morphism p : T → S and a quasi-projective morphism h : Q → T , we
have the diagram

Q RpQ×S T RpQ

T S
h

e

g

q

f

p

where e is the counit of the adjunction (p∗, p∗), q and g are the canonical projections, and f = Rp(h).
Then we define

Dis#∗ : f#q∗e
∗ Ex#∗−−−→ p∗g#e

∗ 󰂃−→ p∗h# : QPU → QPS

Furthermore, we consider

Dis#⊗ : f#q⊗e
∗ Ex#⊗−−−→ p⊗g#e

∗ p−→⊗ h#,

Dis⊗∗ : p⊗h∗
η−→ p⊗g∗e

∗ Ex⊗∗−−−→ f∗q⊗e
∗
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3.1. Categorical encapsulation of motivic norms and their coherence. To organize these
properties and their coherence more efficiently, we introduce the notion of spans.

Definition 3.4. Given a category C with two classes of morphisms L and R such that
• they all contains equivalences,
• the pull-back of any arrow in L (resp. in R) along any arrow in R (resp. in L) is still in L

(resp. in R),
• they are closed under compositions,

we construct a new ∞-category Span(C,L,R) whose objects are objects in C and morphisms are of
the form

• f←− • g−→ •
where f ∈ L and g ∈ R. The composition is given by pull-back.

In this subsection, we will construct the functor

SH⊗ : Span(Sch, all, fét) → CAlg(Cat∞), S 󰀁→ SH(S), (U
f←− T

p−→ S) 󰀁→ p⊗f
∗

such that
• If p, q are composable finite étale maps, then (q ◦ p)⊗ ≃ q⊗ ◦ p⊗.
• given a cartesian square

• •

• •

g

q p

f

with p finite étale , f∗ ◦ p⊗ ≃ q⊗ ◦ g∗
• coherence of the above equivalences.

The strategy to construct this functor follows the diagram 2 basically, but we still need some
modification: we need to replace SmS by SmQPS . There are two reasons for this modification:

• In the case of smooth quasi-projective schemes, the existence of the Weil restriction is
guaranteed, see Proposition Theorem 2.7. In this way, we can restrict the case to p∗ :
SmQPT → SmQPS , and simplify the whole machinery.

• There is no harm, since ShvNis(SmQPS) ≃ ShvNis(SmS), which means that we can still get
H(S) from PΣ(SmS) by motivic localization. In other words, H(S) is generated by SmQPS

under sifted colimits.
Based on these observations, the construction follows the next process:

SmQPS+ ⇝ PΣ(SmQPS)• ⇝ H•(S) ⇝ SH(S)

More precisely,

(1) The assignment S 󰀁→ SmQPS+ forms a functor Span(Sch, all, fét) → CAlg(Cat1);
(2) By sifted cocompletion, we can extend the previous one to S 󰀁→ PΣ(SmQPS)•, which forms

a functor Span(Sch, all, fét) → CAlg(Catsift∞ );
(3) Show the assignment preserves motivic equivalences, so we can pass to

H(−)⊗• : Span(Sch, all, fét) → CAlgCAlg(Catsift∞ ), S 󰀁→ H(S)•.

(4) Show the assignment preserves Thom spaces so that we can pass to

SH(−)⊗• : Span(Sch, all, fét) → CAlgCAlg(Catsift∞ ), S 󰀁→ SH(S).
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The non-trivial ones are the last two steps. Bachmann and Hoyois prove them in a very smart and
elegant way in [BH21, §6.1]. Their proof is basically using categorical machinery.

Beyond the construction SH⊗, we can generalized SH⊗ to define a notion describing a family of
symmetric monoidal ∞-categories parameterized by schemes with multiplicative transfers associated
to finite étale morphisms.

Let S be a scheme. We write C ⊂fét SchS if C is a full subcategory of SchS that contains S and
is closed under finite coproducts and finite étale extensions. We denote fét the class of finite étale
morphisms.

Definition 3.5 (Normed ∞-category). Let S be a scheme and C ⊂fét SchS . A normed ∞-category
over C is a functor

A : Span(C, all, fét) → Cat∞, (X
f←− Y

p−→ Z) 󰀁→ p⊗f
∗,

preserving finite products. A is said to be presentably normed if:

(1) A(X) is presentable for every X ∈ C;
(2) h∗ : A(X) → A(Y ) has a left adjoint h# for every finite étale morphism h : Y → X;
(3) f∗ : A(X) → A(Y ) preserves colimits for every morphism f : Y → X;
(4) for every pull-back square

Y ′ Y

X ′ X

g

h′ h

f

where h is a finite étale morphism, there an equivalence

Ex∗# : h′#g
∗ → f∗h# : A(Y ) → A(X ′)

as an exchange transformation;
(5) p⊗ : A(Y ) → A(Z) preserves sifted colimits for every finite étale morphism p : Y → Z;
(6) for every diagram

U RpU ×S T RpU

T S
h

e

g

q

f

p

where p and h are finite étale morphisms, there exists an equivalence

Dis#⊗ : f#q⊗e
∗ → p⊗h#

as the distributivity transformation .

3.2. The category of normed motivic spectra. Recall that if A : C → Cat∞ is a functor
classifying a cocartesian fibration p : E → C, a section of A is a section s : C → E of p. More
specifically, for any c ∈ C, s(c) is an object in A(c). We write

󰁝
A = E and Sect(A) = FunC(C, E)

Definition 3.6. Let S ∈ Sch and C ⊂fet SchS . A normed spectrum over C is a section of SH⊗ over
Span(C, all, fét) that is cocartesian over Cop. An incoherent normed spectrum over C is a section of
hSH⊗ over Span(C, all, fét) that is cocartesian over Cop.

The full subcategory of normed spectra over C is denoted by NAlgC(SH) ⊂ Sect(SH⊗ | Span(C, all, fét)).
The frequent choices of C are SmS , SchS and FEtS . For convenience, we write NAlgSm(SH(S))
instead of NAlgSmS

(SH).
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Roughly speaking, a normed spectrum E over C is to assign EX ∈ SH(X) for any X ∈ C
and p⊗f

∗EX → EZ in SH(Z) for any span X
f←− Y

p−→ Z. Note that by full-back, we have that
f∗EY = EX naturally. Therefore, the extra data for an (incoherent) normed structure is a spectrum
E ∈ Sch(S) equipped with a parametrized multiplicative transfer µp : p⊗EV → EU for any finite
étale morphism p : V → U in C such that the following coherence conditions are satisfied.

Condition 3.7 (Coherence conditions for incoherent normed spectra). (1) µp is an equivalence
when p is the identity;

(2) The square with two arbitrary composable finite étale morphisms q : W → V and p : V → U
in C

p⊗q⊗EW p⊗EV

(pq)⊗EW EU

p⊗µq

≃ µp

µpq

commutes up to homotopy.
(3) for every pull-back square

V ′ V

U ′ U

g

q p

f

in C where p is a finite étale morphism, the following diagram

f∗p⊗EV f∗EU

q⊗g
∗EV

q⊗EV ′ EU ′

f∗µp

≃

≃

≃

µq

commutes up to homotopy.

In particular, these coherence conditions imply that µp : p⊗EV → EU is homotopically equivariant
for the action of Aut(V/U) on p⊗EV . Thus we have

µp : (p⊗EV )hAut(V/U) → EU

Basically, the multiplicative coherence data for a normed spectrum over C ⊂fét SmS is parametrized
by C ∩ FEtS .

Proposition 3.8. Suppose S is a scheme and C ⊂fét SchS .

(1) The ∞-category NAlgC(SH) → SH(S) admits all finite limits and colimits. If C is a small
∞-category, then NAlgC(SH) is presentable.

(2) The forgetful functor NAlgC(SH) → SH(S) is conservative and preserves sifted colimits and
finite limits. If C ⊂ SmS , it preserves limits and hence is both monadic.

Proof. See [BH21, Proposition 7.6]. □
Remark 3.9. The forgetful functor NAlg(SH) → SH(S) has a left adjoint NSymC : SH(S) →
NAlgC(SH). When C = SmS or C = FEtS , we have that

NSymC(E) = colim
f :X→S
p:Y→X

f#p⊗(EY )
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where the indexing ∞-category is the source of the cartesian fibration classified by Cop → S,
X 󰀁→ FEt≃X . Therefore the motivic norm structure on a spectrum E ∈ SH(S) can be exhibited as

NAlgC(E) → E

The monadic argument can be found in [BH21, Section 7.1,16.4]. Motivated by this, Bachmann,
Elmanto and Heller define the notion of motivic colimits [BEH21].
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4. Norms in equivariant homotopy theory

4.1. Unstable G-equivariant homotopy theory. Let f : H → K be a group homomorphism.
Then we have

f! : SpcG −→ SpcK
X 󰀁−→ K ×H X

f∗ : SpcG −→ SpcK
X 󰀁−→ Map(K,X)H

and they forms adjoint functors

SpcH SpcK

f!

f∗

SpcH SpcK

f∗

f∗

where f∗ is the pull-back of the group action:

Fun(BK,Spc) ◦Bf−−→ Fun(BH,Spc).
We may called f! the induction functor along f and f! the coinduction functor along f .

4.2. Set-up for equivariant stable homotopy theory. Let G be a group, we let BG be the
associated ∞-groupoid.

Let SpcG be the (1-)category of G-spaces and let W1 be the class of G-equivariant weak homotopy
equivalence. Then we have

SpcG[W1] ≃ Fun(BG,Spc)
where the LHS should be considered as the homotopy coherent nerve of the hammock localization
of SpcG with respect to W1.

However, the problem is that since the categorical homotopy fixed point functor is not a homo-
topical functor, we may loss the information of the homotopy types of XH for all non-trivial H ⊂ G.
To fix this issue, we need to define a more suitable class of weak equivalences.

Definition 4.1. Let W ⊂ SpcG be the class of morphisms f : X → Y such that fH : XH → Y H is
a G-weak homotopy equivalence for all H ⊂ G.

On the other hand, we need to consider how to modify BG, namely we need to find a better
∞-category to parameterize spaces for G-equivariant homotopy theory.

Definition 4.2. Let OG be the category called Elmendorf orbit category with
• objects: G/H where H is a closed subgroup;
• morphisms: G-equivariant continuous functors. Specifically, there exists a G/H1 → G/H2

if and only if gH1g
−1 ⊂ H2 for some g ∈ G (and the morphism is given by [x] 󰀁→ [gxg−1]).

In particular, SpcG ≃ Fun(Oop
G ,Spc) as a homotopy cocompletion, since a G-space is a colimit

of G-orbits. An alternative model for Spc is PΣ(FinG) where FinG is the category of finite discrete
G-sets.

When passing to stable world, we have several strategies
• Borel G-spectra: SphG := Fun(BG,Sp) is called the stable ∞-category of Borel G-

spectral, which can be obtained by do S1-stabilization on Fun(BG,Spc);
• Naive G-spectra: SpG := Fun(Oop

G ,Sp) is the stable ∞-category of naive G-spectra,
which can be obtained by S1-stabilization on Fun(Oop

G ,Spc).
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• Genuine G-spectra: SpG := Fun⊕(Span+(FinG),Sp) is the stable ∞-category of genuine
G-spectra, where Span+(FinG) is the Burnside category and a genuine G-spectra is also
called a spectral Mackey functor.

Definition 4.3. Let Span(FinG) = Span(FinG, all, all). The space of the morphism space HomSpan(FinG)(X,Y )
is a commutative monoid whose addition is given by coproducts

X X

(Z ′ + Z) Z
󰁣

Z ′

Y Y

The Burnside category Span+(FinG) is obtained from Span(FinG), which is called effective
Burnside category by doing group completion on the mapping commutative monoid.

The extra data in the comparison between naive G-spectra and genuine G-spectra is about
transfers in equivariant homotopy theory. We will see how these transfers are actually from transfers
in representation theory by using the following definition of genuine G-spectra.

Definition 4.4. Let V be a G-representation and SV be the representation sphere by one-point
compactification. Then the stable ∞-category of genuine G-spectra is obtained by

SpG = SpcG[{S−V }V ∈Rep(G)]

namely it is given by the formal inversion with respect to all G-representation spheres.

Remark 4.5. If G is a finite group, then its regular representation R(G) is the direct sum of all
the irreducible G-representations. Then by the semi-simple property of G-modules, we have that

SpG = SpcG[S−R(G)].

Note that SV⊕W ∼= SV ∧ SW .

Now we recall some transfers in representation theory. Let H ⊂ G be a subgroup, then we have
a pair of adjoint functors

Rep(H) Rep(G)

IndGH

ResGH

Rep(G) Rep(H)

ResGH

CoindGH

Then we may upgrade them to

SpcH SpcG

IndGH

ResGH

SpcG SpcH

ResGH

CoindGH
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and the unstable norm is given by

SpcH SpcG

SpcH• SpcG•

CoindGH

(−)+ (−)+

NG
H

By stabilization with respect to all representation spheres, we eventually have the equivariant stable
norm functor NG

H .
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Appendix A. Appendix: Galois descent

A.1. Galois descent for vector spaces. Let L/K be a finite Galois extension with Galois group
G. By tensor products, we have

L⊗K − : VectK −→ VectL
V 󰀁−→ L⊗K V

Question A.1. Given a L-vector space W , can we find a K-vector space V such that W ∼= L⊗K V
as L-vector spaces?

Notice that there is a G-action on L⊗K V by

g · (a⊗ v) = (g · a)⊗ v, ∀g ∈ G

and this G-action is compatible with its K-vector space structure, since g is a K-linear map. The
following notion encapsulates these structures

Definition A.2. Let W be a L-vector space and g ∈ G. An additive functionϕ : W → W is said
to be g-linear if

ϕ(aw) = g(a)ϕ(w), ∀v ∈ W, a ∈ L.

A G-structure on W is a set of functions ϕg : W → W such that ϕg is a g-linear function for all
g ∈ G and ϕg1 ◦ ϕg2 = ϕg1g2 . We may also say G acts semilinearly on V .

Example A.3. Given a K-vector space V , L⊗K V has a standard G-structure

g : a⊗ v 󰀁→ g(a)⊗ v.

Proposition A.4. A L-vector space W is of the form W ∼= L⊗K V for some K-vector space V if
and only if L has G-structure.

Roughly speaking, given a L-vector space W with G-structure, we have

L⊗K WG ∼= W

where WG is the space of G-fixed points and it is a K-vector space in nature.
Let ModG be the category of L-vector space with G-structure. Proposition A.4 is saying that

Vectk ∼= ModG

A.2. Descent data for quasi-coherent sheaves.

Definition A.5. Let S be a scheme. Let {fi : Si → S}i∈I be a family of morphisms. A descent
datum {Fi,ϕij) for quasi-coherent sheaves with respect to the given family is given by a quasi-
coherent sheaf Fi on Si for each i ∈ I, an isomorphism of OSi×Sj -modules:

ϕij : pr
∗
0Fi → pr∗1Fj

for each pair (i, j) ∈ I2, where the morphisms are given by following cartesian square

Si ×S Sj Si

Sj S

pr0

pr1

such that the cocycle condition for OSi×SSj×SSk
-modules

pr∗0Fi pr∗2Fk

pr∗1Fj

pr∗01 ϕij

pr∗02 ϕik

pr∗12 ϕjk
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given by

Si ×S Sj ×S Sk

Si ×S Sj Si ×S Sk Sj ×S Sk

Si Sj Si Sk Sj Sk

S S S

pr01 pr12pr02

pr1pr0 pr0 pr1 pr0 pr1

where the copies of Si (resp. Sj , resp. Sk) are identified.

Definition A.6. Let S be a scheme and {f : Si → S}i∈I be a family of scheme morphisms. Let F
be an OS-module.

• The identity morphism {id : S → S} with its natural descent datum is called the trivial
descent.

• The pull-back of the trivial descent along {f : Si → S} i.e. {F|Si , can} is the canonical
descent datum;

• a descent data {Fi,ϕij} on {fi : Si → S} is called an effective descent datum if it is
isomorphic to a canonical descent datum for some OS-module F .

Proposition A.7. Let F := {fi : Si → S} be a family of morphisms.
• If F is an open covering, then any descent datum is effective.
• If fi is flat for any i ∈ I and for any affine open set V ⊂ S, there exists a finite subset
J ⊂ I with affine open subsets Vj ⊂ Sj for any j such that ∪j∈Jfj(Vj) = V (i.e. F is a fpqc
covering), then any descent datum is effective.

A.3. Galois descent data for schemes. Let L/K be a finite Galois extension with Galois group
G. In particular, the morphism {SpecL → SpecK} is a fpqc covering and an étale covering at the
same time. Now we try to adapt Definition A.5 to the case of Galois extensions.

Lemma A.8. Let Lσ be a L-algebra given by σ : L → L ∈ G. Then

L⊗K L ∼=
󰁜

σ∈G
Lσ, x⊗ y 󰀁→ (xσ(y))σ

as L-algebras. Let G act on
󰁔

σG Lσ by g · (xσ)σ = (xσg)σ for any g ∈ G. Then we have L ∼=
(
󰁔

σ∈G Lσ)
G as K-algebras. Similarly, L⊗K⊗KL ∼=

󰁔
(σ,τ)∈G×G L given by a⊗b⊗c 󰀁→ (aσ(b)τ(c))σ,τ .

For any scheme X over K, we have XL⊗KL
∼=

󰁣
σ∈GXLσ . For any σ ∈ G, we let σ∗ : SchL → SchL

be the functor induced by σ∗ : SpecL → SpecL in the following way:

(Y → SpecL) 󰀁→ (Y → SpecL
σ∗
−→ SpecL).

In particular, we let Tσ : XL → XL be id× σ∗ which is coincident with σ∗|XL
: XL → XL

2.

Then pr0 : XL⊗KL → XL corresponds to
󰁣

σ∈GXL

󰁣
id−−−→ XL and pr1 : XL⊗KL → XL corre-

sponds to
󰁣

σ∈GXL

󰁣
σ∗

−−−→ XL. Similarly, we can write down pr01, pr12, pr02 from
󰁣

(σ,τ)∈G×GXL →

2This is abuse of notation, because we hope to present it as a morphism between schemes instead of a part of the
functor σ∗.
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󰁣
g∈GXL by

(σ, τ) 󰀁→ σ

(σ, τ) 󰀁→ τ

(σ, τ) 󰀁→ στ

respectively. Then we can define the Galois descent for quasi-coherent sheaves.

Definition A.9. Let X be a scheme over K. Then a Galois descent datum (along XL → X) is
a quasi-coherent sheaf F on XL with a family of isomorphisms

{ϕσ : T
∗
σF → F}σ∈G

satisfying the cocycle condition

ϕσ ◦ (T ∗
σϕτ ) = ϕστ for all σ, τ ∈ G.

Theorem A.10. Let X be a scheme over K. Then the category of quasi-coherent sheaves on X is
isomorphic to the category of Galois descent data along XL → X.

This theorem is true due to the effectiveness of descent data along the fpqc covering SpecL →
SpecK.

Any sheaf of algebra A over S can be realized as an relative affine scheme over S i.e. an affine
morphism3 f : SpecA → S such that for any open subset U ⊂ S, A(U) ∼= Γ(f−1(U);SpecA).
Therefore, descent data for relatively affine schemes can be encoded in descent data for quasi-
coherent sheaves. Similarly, we also have relative projective construction Proj for sheaves of graded
algebras over S, which means that descent data for relatively projective schemes can also be encoded
in descent data for quasi-coherent sheaves.

Therefore, we can define descent data for schemes in an analogous way.

Definition A.11. A Galois descent datum along L/K is a L-scheme V with a family of isomorphism
{ϕσ : σ

∗V → V }σ∈G satisfying the following cocycle condition: ϕσ ◦ (σ∗ϕτ ) = ϕστ for all σ, τ ∈ G
i.e. the following diagram commutes

(στ)∗V V

σ∗V
σ∗ϕτ

ϕστ

ϕσ

At least we know that if V is an affine or projective L-scheme, the Galois descent is effective.
Moreover, if the descent datum on V is effective, then any clopen subsets of V with the associated
restriction descent datum is also effective.

Theorem A.12. Let L/K be a finite Galois extension with Galois group G. Then any Galois
descent datum (V, {ϕσ}σ∈G) is effective if V is quasi-projective.

3A morphism f : X → Y between scheme is affine if for any affine open subscheme U ⊂ Y , f−1(U) is an affine
open subscheme in X.
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