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Abstract. Levine gave an extension of Bloch’s localization theorem for the higher Chow groups
to schemes of finite type over a Dedekind domain.In particular, given a discrete valuation field
(K, v) with the valuation ring OK and the residue field k, Levine’s localization sequence induces
a boundary map CHn(SpecK,n)

∂−→ CHn−1(Speck, n− 1). Using Nesterenko-Suslin’s identification
CHn(SpecF ;n) ∼= KM

n (F ) for any field F , we will show that this boundary map coincides with the
residue boundary map ∂v in the Milnor K-theories.
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1. Recollection: the Milnor K-theory and higher Chow groups

1.1. Milnor’s K-theory.

Definition 1.1. Let F be a field and its Milnor K-theory KM
∗ (F ) is defined to be

SymZ(F
×)/{a⊗ 1− a | a ∈ F \ 0, 1}

where SymZ means the free commutative algebra generated by the abelian group F×. We denote
the image of a1 ⊗ · · ·⊗ an by {a1, · · · , an}.

Lemma 1.2 ([Mil70]). Let a1, · · · , an ∈ F×. If
󰁓n

i=1 ai = 1, then {a1, · · · , an} = 0.

Proposition 1.3 ([Mil70]). Let (K, v) be a valuation field with uniformizer t, valuation ring OK ,
and residue field k. Then there is a unique homomorphism

∂v : K
M
n (K) → KM

n−1(k)

such that for any u1, · · · , un ∈ O×
K and x ∈ K×, we have {x, u2, · · · , un} 󰀁→ v(x){ū2, · · · , ūn}, where

ūi is the residue class of ui in k.

1.2. Higher Chow groups. Now we recall the construction of higher Chow groups in the sense of
Bloch [Blo86] and Levine [Lev01].

Let B be a regular Noetherian scheme of dimension 1. Let X
p−→ B be an irreducible B-scheme

of finite type scheme. The dimension of X is defined in the following two cases. Let η ∈ B be the
image of the generic point along p.

(1) If η is a closed point, then dimX := dimk(η)X.

(2) If η is not a closed point, then dimX := dimk(η)+1.
1
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Let X be an equidimensional scheme of dimension d and V ⊂ X be an irreducible closed subscheme
of X of dimensional i. The codimension codimXV is defined to be d− i.

We say two closed subschemes V and W of X intersect properly, if for each irreducible component
C of W ∩ V

dimC ≤ dimV + dimW − dimX

For n ≥ 1, we define the n-algebraic simplex ∆n
B := Spec(OB[x0, · · · , xn])/(

󰁓
i xi − 1). The i-th

(codimension 1) face of ∆n
B is the closed subscheme cut by xi. Given an equi-dimensional B-scheme

of finite type, we let zn(X, i) be the free abelian group generated by all closed integral subschemes
of codimension n in X×B∆i

B, which intersect all the faces properly. This forms a simplicial abelian
groups and we get the Bloch-Levine cycle complexes after doing Dold-Kan correspondence. The
higher Chow groups of X are defined to be CHq(X, p) := Hp(z

q(X, ∗)).

Theorem 1.4 (Levine). Suppose B is a DVR and X is a B-scheme of finite-type. Let i : Z → X
be a closed embedding of codimension c and j : U → X be its open complement, then we have the
following exact sequence

0 zq−c(Z, ∗) zq(X, ∗) zq(U, ∗)i∗ j∗

and the cokernel of j∗ is acyclic, which induces long exact sequences of higher Chow groups

· · · CHq−c(Z, p) CHq(X, p) CHq(X, p) CHq−c(Z, p− 1) · · ·i∗ j∗ ∂

In this article, we focus on the case X = SpecOK , Z = Speck and U = SpecK for a discrete
valuation field K. For dimension reasons, CHp(SpecK, q) = 0 = CHp(Speck, q) if q > p. The edge
of non-trivial range of these higher Chow groups are p = q = n ≥ 0.

Theorem 1.5 (Nesterenko-Suslin,Totaro). For each n ≥ 0 and a field F , there is a natural isomor-
phism KM

n (F ) ∼= CHn(SpecF, n).

2. The computation of the boundary map

Let (K, v) be a valuation field with uniformizer t, valuation ring OK and residue field k. The
Milnor K-theory KM

n (K) is generated by the symbols of the form {t, u2, · · · , un}, where ui ∈ O×
K .

According to Nesterenko-Suslin’s construction [NS89], the symbol u = {t, u2, · · · , un} corresponds
to the zero cycle

λu = 1− t−
n󰁛

i=2

ui, Wu = (
−t

λu
,
−u2
λu

, · · · , −un
λu

,
1

λu
) ⊂ ∆n

K .

More precisely, it is the prime ideal I(Wu)

(x0 +
t

λu
, x1 +

u2
λu

, · · · , xn−1 +
un
λu

, xn − 1

λu
)

in K[x0, · · · , xn] containing (
󰁓n

i=0 xi − 1). Note that ∆n
OK

⊂ ∆n
K is an open subscheme. We let

󰁩Wn be the closure of Wu ∩∆n
OK

in ∆n
OK

. In other words, 󰁩Wu is the scheme-theoretic image of the
locally closed embedding

Wu ↩→ ∆n
K ↩→ ∆n

OK

which means that the ideal I(󰁩Wu) is given by the kernel of the composition

OK [x0, · · · , xn] ↩→ K[x0, · · · , xn] → K[x0, · · · , xn]/I(Wu).

Lemma 2.1. The cycle class [󰁩Wu] does not meet i-th face of ∆n
OK

when i > 1, and it meets the
0-th face if and only if λu is a unit. Moreover, the cycle class [󰁩Wu] is in zn(SpecOK , n).
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Proof. Let σi : ∆
n−1
OK

→ ∆n
OK

be the i-th face map (x0, · · · , xn) 󰀁→ (x0, · · · , xi−1, 0, xi, · · · , xn). Let
fi be the associated map on the rings of functions

OK [x0, · · · , xn]
fi−→ OK [x0, · · · , xn−1], xj 󰀁→

󰀻
󰁁󰀿

󰁁󰀽

xj , j < i

0, j = i

xj−1, j > i

According to the definition, one has (λux0 + t,λux1 + u2, · · · ,λuxn−1 + un,λuxn − 1) ⊂ I(󰁩Wu).
Therefore, for i > 0, σ−1

i (󰁩Wu) is empty, because fi(λuxi + ui+1) = ui+1 is a unit.
In the case of the 0-th face’s intersection σ∗

0[W̃u], we divide it in two cases. If v(λu) > 0, in
other worlds, λu = εtm for some m ≥ 1 and ε ∈ O×

K , then tm−1x0 − ε−1 ∈ I(󰁩Wu), and thus
f0(I(󰁩Wu)) = (ε−1) = (1), which means that [󰁩Wu] does not meet the 0-th face.

If v(λu) = 0 i.e. λu ∈ O×
K , then we may lift the ideal I(Wu) directly as an ideal in OK [x0, · · · , xn]

and I(󰁩Wu) = (x0 − λ−1
u , x1 + λ−1

u u2, · · · , xn−1 + λ−1
u un, xn − λ−1

u ) ⊂ OK [x0, · · · , xn]. In this case,
the ideal generated by f(I(󰁩Wu)) is (t, x0 + λ−1

u u2, · · · , xn−2 + λ−1
u un, xn−1 − λ−1

u ), whose quotient
ring is k, and thus dimσ−1

0 (󰁩Wu) = 0. □
For now on, we abbreviate z∗(SpecR, ∗) by z∗(R, ∗) and CH∗(SpecR, ∗) by CH∗(R, ∗) for any

commutative ring R.

Theorem 2.2. The boundary map CHn(K,n) → CHn−1(k, n − 1) induced by the localization
sequence 0 → zn−1(k, ∗) i∗−→ zn(OK , ∗) j∗−→ zn(K, ∗) coincides with the residue boundary map
KM

n (K)
∂v−→ KM

n−1(k).

Proof. By unwinding the construction of the boundary map and following the notation in the
beginning of this section, one consider the diagram,

󰁩Wu

0 zn−1(k, n) zn(OK , n) zn(K,n) Wu

0 zn−1(k, n− 1) zn(OK , n− 1) 0 (K×)n {t, u2, · · · , un}

KM
n−1(k) KM

n (K)

dn

χ

θ

∂v

Note that [W̃u] is an allowable cycle in good positions, according to Lemma 2.1. We divide the
discussion of the boundary map in two cases.

Case 1: If v(λu) = 0, then dn[󰁩Wu] = σ∗
0[
󰁩Wu], cut by (t, x0+λ−1

u u2, · · · , xn−2+λ−1
u un, xn−1−λ−1

u ),
so it is on the special fiber over OK . Therefore, one can lift the cycle σ∗

0[
󰁩Wu] to the zero cycle

(−ū2/λ̄u, · · · , ūn/λ̄u, 1/λ̄u) in ∆n−1
k . Using Nesterenko-Suslin’s identification, this cycle corresponds

to the symbol {ū2, · · · , ūn}, which coincides with Proposition 1.3.
Case 2: If v(λu) > 0, then [󰁩Wu] does not meet any face in ∆n

OK
and thus ∂[W ] = 0. Meanwhile,

v(λu) > 0 means that Σn
i=2ūi = 1, and by Lemma [Mil70, Lemma 1.3], one has {ū2, · · · , ūn} = 0 in

this case, which also coincides with each other. □
Corollary 2.3. Following previous notation, one have

(1) CHn(OK , n) = ker(∂v : K
M
n (K) → KM

n−1(k)),
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(2) CHn(OK , n− 1) = coker(∂v : K
M
n (K) → KM

n−1(k))=0.

Proof. Now we adapt the closed embedding Speck → SpecOK to Levine’s localization sequence:

0 CHn(OK , n) CHn(K,n) CHn−1(k, n− 1)
i∗ j∗ ∂

Therefore, we can deduce that CHn(OK , n) = ker(∂v : K
M
n (K) → KM

n−1(k)).
For another part of the long exact sequence, one has

CHn(K,n) CHn−1(k, n− 1) CHn(OK , n− 1) 0∂ j∗

Thus one has CHn(OK , n− 1) = coker(∂v : K
M
n (K) → KM

n−1(k)). □

3. Applications

We rewrite higher Chow groups in motivic cohomology groups by Hp(−;Z(q)) := Hq(−, 2q − p).
We assume K is a p-adic field with residue field k with characteristic p. According to the result

by Gessier and Levine [GL00], one has

Hi(k;Fp(n)) =

󰀫
KM

n (k)/p, i = n;

0, i ∕= n.
, KM

n (k)/p =

󰀝
Fp, n = 0;

0, n ∕= 0.

Hence when i > j, Hi+1(OK ;Fp(j − 1)) ∼= Hi+1(K;Fp(j)).
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