LOCALIZATION SEQUENCES OF HIGHER CHOW GROUPS OF A DVR

TONGTONG LIANG

ABsTRACT. Levine gave an extension of Bloch’s localization theorem for the higher Chow groups
to schemes of finite type over a Dedekind domain.In particular, given a discrete valuation field
(K,v) with the valuation ring Ok and the residue field k, Levine’s localization sequence induces
a boundary map CH"(SpecK,n) LN CH"!(Speck,n — 1). Using Nesterenko-Suslin’s identification
CH"(SpecF;n) = KM (F) for any field F, we will show that this boundary map coincides with the
residue boundary map 0, in the Milnor K-theories.
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1. RECOLLECTION: THE MILNOR K-THEORY AND HIGHER CHOW GROUPS
1.1. Milnor’s K-theory.
Definition 1.1. Let F be a field and its Milnor K-theory KM (F) is defined to be
Symz(F*)/{a®1—al|ae F\O0,1}
where Sym; means the free commutative algebra generated by the abelian group F'*. We denote
the image of a1 ® - - ® a,, by {a1,- - ,a,}.
Lemma 1.2 ([Mil70]). Let ai,--- ,a, € F*. If > a; = 1, then {a;,--- ,a,} = 0.
Proposition 1.3 ([Mil70]). Let (K, v) be a valuation field with uniformizer ¢, valuation ring O,
and residue field k. Then there is a unique homomorphism
Oy Ky (K) — KLy (k)

such that for any uy,- -+ ,u, € Of and x € K*, we have {x,ua, -+ ,un} — v(x){t2, - ,Un}, where
u; is the residue class of u; in k.

1.2. Higher Chow groups. Now we recall the construction of higher Chow groups in the sense of
Bloch [Blo86] and Levine [LevOl].

Let B be a regular Noetherian scheme of dimension 1. Let X 2y B be an irreducible B-scheme
of finite type scheme. The dimension of X is defined in the following two cases. Let n € B be the
image of the generic point along p.

(1) If n is a closed point, then dim X := dimy,) X.
(2) If n is not a closed point, then dim X := dimy,,) +1.
1
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Let X be an equidimensional scheme of dimension d and V' C X be an irreducible closed subscheme
of X of dimensional 7. The codimension codimxV is defined to be d — 1.
We say two closed subschemes V and W of X intersect properly, if for each irreducible component
CofWnvV
dimC <dimV +dim W — dim X

For n > 1, we define the n-algebraic simplex A% := Spec(Oglzo, - ,x,])/(>_; xi —1). The i-th
(codimension 1) face of A’ is the closed subscheme cut by x;. Given an equi-dimensional B-scheme
of finite type, we let 2"(X, ) be the free abelian group generated by all closed integral subschemes
of codimension n in X x g A%, which intersect all the faces properly. This forms a simplicial abelian

groups and we get the Bloch-Levine cycle complexes after doing Dold-Kan correspondence. The
higher Chow groups of X are defined to be CHY(X, p) := Hp(29(X, *)).

Theorem 1.4 (Levine). Suppose B is a DVR and X is a B-scheme of finite-type. Let i: Z — X
be a closed embedding of codimension ¢ and j: U — X be its open complement, then we have the
following exact sequence

0 —— 297°(Z, %) b 29(X, %) ]—*> 29(U, %)

and the cokernel of j* is acyclic, which induces long exact sequences of higher Chow groups
. —— CHY(Z,p) —— CH(X,p) —— CHY(X,p) —2 CHI*(Z,p—1) —> -

In this article, we focus on the case X = SpecOk, Z = Speck and U = SpecK for a discrete
valuation field K. For dimension reasons, CHP(SpecK, q) = 0 = CHP(Speck, q) if ¢ > p. The edge
of non-trivial range of these higher Chow groups are p =q¢=n > 0.

Theorem 1.5 (Nesterenko-Suslin, Totaro). For each n > 0 and a field F', there is a natural isomor-
phism KM (F) = CH"(SpecF,n).

2. THE COMPUTATION OF THE BOUNDARY MAP

Let (K,v) be a valuation field with uniformizer ¢, valuation ring O and residue field k. The
Milnor K-theory K2 (K) is generated by the symbols of the form {t,ua, -+ ,u,}, where u; € O}.
According to Nesterenko-Suslin’s construction [NS89|, the symbol w = {¢,ua, -+ ,up} corresponds
to the zero cycle

n
—t —us —u, 1
No=1—t=> uy W= (0, — 2., 2" ) c Ap.
" 2t W= (L 5m 3 by, € Ak
More precisely, it is the prime ideal I(W,,)
t U9 Unp, 1
($0+>\u’x1+)\u, axn—1+)\u,$n /\u)

in K[zg,---,xy,] containing (3 ;" x; — 1). Note that A%LC A’ is an open subscheme. We let

Wn be the closure of W, N A?QK in A%K. In other words, W, is the scheme-theoretic image of the
locally closed embedding
Wy, — Ak — A’(E)K

which means that the ideal I(W,,) is given by the kernel of the composition
OK[:EO)"' )x’n] — K[ZL'O,"' 7xn] — K[IO7”' axn]/I(Wu)

Lemma 2.1. The cycle class [Wu] does not meet i-th face of A% ~when ¢ > 1, and it meets the

0-th face if and only if A\, is a unit. Moreover, the cycle class [Wu] is in 2" (SpecOg,n).
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Proof. Let o;: A%;l — Ap,. be the i-th face map (zo, -+ ,zn) = (zo, -+, @i—1,0, 24, -+ ,p). Let
fi be the associated map on the rings of functions
ZTj, i<t
Oklxo, -+ ,an] LN Oklzo, -+ ,xp-1], xj — ¢ 0, J=1

Tj-1, J>1i

According to the definition, one has (Ayzg + €, A1 + U, - -+, AyZp—1 + Up, AyZp, — 1) C I(Wy,).
Therefore, for i > 0, o, 1(Wu) is empty, because f;(Ayx; + Ui+1) = ui4+1 is a unit.

In the case of the 0-th face’s intersection oj[W,], we divide it in two cases. If v(\,) > 0, in

other worlds, A\, = et™ for some m > 1 and ¢ € O, then t" 'zg —e~! € I(W,), and thus

fo(I(Wy)) = (¢71) = (1), which means that [IW,,] does not meet the 0-th face.
If v(A\y) = 01ie. A, € O, then we may lift the ideal I(W,,) directly as an ideal in Oz, - - , Zp]

and I(Wy,) = (zo — A\t 21 + A ug, - s 21 + A Y, 2 — A1) € Oklzo,- -+, o,). In this case,
the ideal generated by f(I(W,)) is (t,m0 + A\ ug, -+ , T2 + A, tun, 1 — A1), whose quotient
ring is k, and thus dim o, ' (W,,) = 0. O

For now on, we abbreviate z*(SpecR, *) by z*(R,*) and CH*(SpecR, ) by CH*(R, %) for any
commutative ring R.

Theorem 2.2. The boundary map CH"(K,n) — CH" !(k,n — 1) induced by the localization

sequence 0 — 2" 1(k,*) N 2"(Ok, %) EMR 2"(K,*) coincides with the residue boundary map
KM (K) %5 KM (k).

Proof. By unwinding the construction of the boundary map and following the notation in the
beginning of this section, one consider the diagram,

W, <
‘ e
0 ——— 2" '(k,n) —— 2"(Ok,n) ——— 2"(K,n) W
Ja | T
0 —— 2" Hk,n—1) — 2"(Og,n—1) ——— 0 (K)" ——— {toug, -, up}

< |

KM (k) o KM(K)

Note that [IW,] is an allowable cycle in good positions, according to Lemma 2.1. We divide the
discussion of the boundary map in two cases.

Case 1: If v(\,) = 0, then dn[Wu] = US[WU], cut by (t, 2o+ A, ug, -+, Tp_o+ A Yy, T — ALY,
so it is on the special fiber over O. Therefore, one can lift the cycle o [Wu] to the zero cycle
(=t2/Aus++ Un /Ay 1/Ay) in AP71. Using Nesterenko-Suslin’s identification, this cycle corresponds

to the symbol {ug,- - ,uy,}, which coincides with Proposition 1.3.

Case 2: If v()\,) > 0, then [W,] does not meet any face in A%, and thus O[W] = 0. Meanwhile,
v(Ay) > 0 means that X" ,u; = 1, and by Lemma [Mil70, Lemma 1.3], one has {ug, - ,u,} =0 in
this case, which also coincides with each other. O

Corollary 2.3. Following previous notation, one have
(1) CH"(Og,n) = ker(9,: KM(K) — KM | (k)),
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(2) CH"(Og,n — 1) = coker(d,: KM(K) — KM, (k))=0.
Proof. Now we adapt the closed embedding Speck — SpecOf to Levine’s localization sequence:
0 —“ 5 CH"(Og,n) —— CH"(K,n) —2— CH" (k,n— 1)
Therefore, we can deduce that CH" (O, n) = ker(9,: KM(K) — KM | (k)).
For another part of the long exact sequence, one has
CH"(K,n) —2— CH" Y(k,n —1) —— CH"(Og,n—1) —L =0

Thus one has CH"(Ok,n — 1) = coker(0,: KM (K) — KM | (k)). O

3. APPLICATIONS

We rewrite higher Chow groups in motivic cohomology groups by HP(—; Z(q)) := HY(—,2q — p).
We assume K is a p-adic field with residue field k£ with characteristic p. According to the result
by Gessier and Levine [GLO0], one has

. KMk' , 1= F,, = 0;
H@(k;fpm)):{o" Wi k= {

Hence when i > j, HFY(Og;F,(j — 1)) 2 HFY(K;Fpu(5))-
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