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abstract
This is a survey on Thom’s solution to the Steenrod problem that is asking whether
each homology class of a finite complex can be realized as a manifold. In particular,
we clarify some vague arguments and calculations in Thom’s paper. Following
Thom’s method, We first show how the problem is translated into a homotopy
lifting problem by Thom’s construction, then we calculate the obstructions of the
corresponding lifting problems in terms of Steenrod operations. This survey aims
to understand this method essentially, which is expected to enlighten us to think
about how to generalize it to algebraic-geometric setting.
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1 introduction

2 realizing homology classes by unoriented man-
ifolds

Definition 2.1 A smooth manifold Mn has a G-structure if its tangent bundle TM

is a G-bundle (or say TM be reduced to a G-bundle).

Definition 2.2 (Orientation) Given a commutative ring R, a R-fundamental class of
a manifold Mn is a homology class σ ∈ Hn(M

n;R) such that for any p ∈ Mn, the
image of σ is a generate of Hn(M

n,Mn − p;R) ∼= R. If Mn admits a R-fundamental
class, then we say Mn is R-orientable. If we say Mn is orientable without mention-
ing the ring, we mean Mn is Z-orientable by default.

In this section, we just discuss the unoriented case. Note that every manifold
is F2-orientable, so in this section, the (co)homology groups are all set to be F2-
coefficient and H∗(−) := H∗(−; F2) (similar for cohomology). Let [Mn] ∈ Hn(M

n)

denote the fundamental class of Mn if we denote specify a fundamental calss.

Definition 2.3 (Homological realization) We say u ∈ Hk(M
n) can be realized by a

G-submanifold, if there exists a G-submanifold Wk of Mn with the natural inclu-
sion i : Wk → Mn such that u = i∗[Wk].

Conjecture 2.4 Is any u ∈ Hk(M
n) is O(k)-realizable for any positive integer k

and manifold Mn?

To study this conjecture, we now reformulate the question in cohomological ver-
sion. This observation is given by Thom.

Definition 2.5 (Cohomological realization) We say a cohomology class u ∈ Hk(X)

is G-realizable if there exists a map f : X → MG such that f∗(ΦG) = u, where MG

is the Thom space of G and ΦG is the universal Thom class in Hk(MG).

By Pontrjagin-Thom construction, we will see that these two notion of realziation
coincide via Poincare duality.

Theorem 2.6 (Thom) Suppose Mn is a manifold, then u ∈ Hk(Mn) is G-realizable
if and only if its dual z ∈ Hn−k(M

n) is G-realizable.

Proof. See [Tho54].

By using this theorem, Conjecture 2.4 is turned in a homotopical lifting problem:
let f : Mn → K(Z/2,k) be the map corresponding to the cohomology class u and ϕ

be a map induced by Thom class, then we will have the following lifting problem:

MO(k)

Mn K(Z/2,k)

ϕk

f

∃?g (1)

The lifting problem is asking whether there exists a continuous map g : Mn →
MO(k) such that ϕ ◦ g ≃ f. Note that the existence of such g is equivalent to a
positive answer of Conjecture 2.4, because g∗ϕ∗ιk = g∗(ΦO(k)) = f∗ιk, where ιk
is the fundamental class of the Eilenberg-Mac lane space, if and only if ϕ ◦ g ≃ f,
according to the Brown’s representability of ordinary cohomology. In summary,
the Conjecture 2.4 is equivalent to ask whether the lifting problem 1 admits an
answer up to homotopy. Furthermore, the obstruction of the lifting problem is the
obstruction to the realization problem. To disclose the obstruction, it is inevitable
to study the homotopy type of MO(k).
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2.1 Computing the homotopy type of MO(k)

The homotopy groups is almost impossible to compute directly. Fortunately, we can
use Whitehead theorem reduce the computation on cohomology groups for simply
connected spaces.

Theorem 2.7 (Whitehead) Suppose X, Y are two simply connected CW-complexes
and let f : X → Y be a cellular map such that for any prime p, f∗ : Hr(Y; Fp) →
Hr(X; Fp) is an isomorphism for r < k and a monomorphism for r = k. Then there
exists a cellular map g : Y → X such that f,g are homotopy equivalence on (k− 1)-
skeletons. (There exists homotopies from f|Xk−1

◦ g|Yk−1
and g|Yk−1

◦ f|Xk−1
to the

identities)

Note that MO(k) and K(Z/2,k) are simply connected for k > 1.

Remark 2.8 Since if p is an odd prime, H∗(Z/2,k; Fp) and H∗(BO(k); Fp) are trivial
and H∗(BO(k);R) ∼= H∗+k(MO(k);R) via Thom isomorphism, thus we just need to
consider the mod 2 cohomology ring of MO(k) and K(Z/2,k).

2.1.1 The cohomology of K(Z/2,k)

We simply denote H∗(K(G,n);A) by H∗(G,h;A).

Theorem 2.9 (Serre-Cartan) H∗(Z/2,k; F2) is generated by iterated Steenrod squares
on the fundamental class ι ∈ Hk(Z/2,k; F2). More specifically, Hk+h(Z/2,k; F2) is
generated by

{Sqi1 · · ·Sqir(ι) |

r∑
m=1

im = h}

An admissible sequence I is an ordered sequence with finitely many positive
integers {i1, . . . , ir} such that i1 ⩾ 2i2, . . . , ir−1 ⩾ 2ir. We denote SqI = Sqi1 . . . Sqir .
The total degree of the sequence I is defined to be

∑
m im. The length of I is the

number of non-zero elements in I.

Proposition 2.10 The admissible iterated Steenrod squares of the fundamental class
form a basis of H∗(Z,k).

Proposition 2.11 The number of decomposition (ignoring the order) of h in sum-
mand of type 2m − 1, which is called dyadic decomposition of h, is equal to the
number of admissble sequence of total degree h.

Proof. Given an admissible sequence {i1, . . . , ir} and we let jn = in− in−1 for n < k

and jr = ir. Note that all these jn are non-negative and we have

in =

r∑
k=n

2k−njk (2)

then
h =

∑
k

ik =
∑
k

(2k − 1)jk (3)

which is a decomposition of h of type 2k − 1. Conversely, given such a decompo-
sition of h, we may write it into the form of ji as formula (3) uniquely, then define
ik as formula (2).

2.1.2 The cohomology ring of MO(k)

Note that BO(k) has a manifold model Gk called k-real Grassmannian manifold
and the cohomology rings is

H∗(Gk) = F2[W1, . . . ,Wk]
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where Wi is the i-th universal Stiefel-Whitney class of degree i. The details are in
[MS74].

Let J be the ideal of H∗(Gk) generated by Wk, then H∗(MO(k)) ∼= J via the Thom
isomorphism. Now the cohomology ring structure of MO(k) is clear, but it is not
enough to show solve the lifting problem 1. We still need to consider the action
of Steenrod algebra A2 on H∗(MO(k)), more specifically, we need to consider the
submodule generated by the Thom class in H∗(MO(k)).

Lemma 2.12 (Wu formula) For any integer r, we have

SqrWi =
∑
t

(
r−i+t−1

t

)
Wr−tWi+t

To study the action of the iterated Steenrod squares on Wk, we define a lexico-
graphic order (R) on monomials in variables with W1, . . . ,Wk by setting Wm < Wn

if m < n. For example,

W5 < W5W1W1 < W5W1W4 < W5W3 < W6

Then we have the following lemma to show the action more precisely:

Lemma 2.13 For any admissible sequence I = {i1, . . . , ir} of total degree h, there
exists QI ∈ Hh(Gk) such that SqIWk = Wk ·QI, where

QI = Wi1Wi2 . . .Wir + strictly lower terms with respect to (R)

.

Proof. The idea of the proof is to iterate Wu’s formula and we argue it by induction
on the length of I. Let I = {i1, . . . , ir}. First, if r = 1, then SqiWk = WkWi, which is
the desired result. Suppose the assertion is true for r < n− 1. Then

SqIWk = Sqi1(Sqi2 . . . SqirWk) = Sqi1(WkP)

=

i1∑
m=0

Sqm(P) · Sqi−mWk

=

i1∑
m=0

Sqm(P)Wi−mWk = Wk(

i1∑
m=0

Sqm(P)Wi−m)

According to the inductive hypothesis, we have P = Wi2 . . .Wir + strictly lower terms.
Then we may let QI =

∑i1
m=0 Sq

m(P)Wi1−m and when m = 0, we have QI =

Wi1Wi2 . . .Wir +
∑i1

m=1 Sq
m(P). Note that Sqm(P) only contains those classes Wi

for which i < 2i2 ⩽ i1 according to Wu’s formula.

Corollary 2.14 Any linear combination of iterated Steenrod squares SqI of total
degree h ⩽ k, which vanishes on Wk, is 0.

Proof. Since the admissible iterated Steenrod squares form a basis of A2, we may
reduce the case to the admissible cases. According to Lemma 2.13, we have that
SqIWk = Wk ·QI. Note that the monomials with distinct order with respect to (R)
are linearly independent. Thus we just need to check the linear dependence of the
leading term of QI: Wi1 . . .Wir , then we have the result immediately.

By the splitting principle, we may take H∗(BO(k)) such a subalgebra of H∗(RP∞)k =

F[t1, . . . , tk], where ti is a the first Stiefel-Whitney class of the universal line bundle
at the i th factor and Wi corresponds to the i th elementary symmetric polynomial.
Thus we have

Lemma 2.15 SqI(t1 . . . tk) are linearly independent for all admissible sequences of
total degree h ⩽ k.
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We observe that Hh(BO(k)) has a basis consists

{
∑

(t1)
a1 . . . (tk)

ak |
∑

ai = h}

where the notation
∑

(t1)
a1 . . . (tk)

ak means the homogeneous symmetric polyno-
mial containing the monomial summand (t1)

a1 . . . (tk)
ak and is totally determined

by the k-partition of h (the ways how we decompose h into a sum of k non-negative
integers). Therefore, for any decomposition ω = {a1, . . . ,ak}, let Sω to denote the
essential system of permutations on ω. For example for ω = {1, 1, 2},

Sω = {(1, 1, 2), (1, 2, 1), (2, 1, 1)}

Notice that the tuple (−, . . . ,−) is ordered and {−, . . . ,−} is not. Then the sum
{
∑

(t1)
a1 . . . (tk)

ak is indexed by Sω actually.
Recall that we identify H∗(MO(k)) with the ideal J in F2[t1, . . . , tk] generated by

t1t2 . . . tk, thus a basis for Hh+k(MO(k)) has a basis∑
(t1)

α1 + 1)(t2)
α2+1 . . . (tr)

αr+1tr+1 . . . tk

and the dimension of Hh+k(MO(k)) is the number of partitions of h. The following
context is to study the relation of these elements with respect to Steenrod squares.
To show the relation precise, we need the following convention:

Definition 2.16 Suppose P ∈ F2[t1, . . . , tk], then we say ti is dyadic for P if the
exponent of ti is either 0 or 2m for non-negative integer m.

Example 2.17 For P(t1, t2, t3) = t33 + t21t2 + t1t3 + t1, t1 and t2 are dyadic while t3
is non-dyadic.

Lemma 2.18 If ti is dyadic for P, then ti is dyadic for SqjP.

Proof. Note that Sqa(ti)
m =

(
m
a

)
tm+a
n . If m ̸= 0 and m = 2r, then

(
m
a

)
≡ 0 mod 2

except to a = 0 or a = m. Therefore only when m = 2r and a = 2r, tn can
survive after the operation. For general case, we may use Cartan’s formula to do
induction.

Definition 2.19 Suppose P = t
a1
1 . . . tar

r is a monomial, the non-dyadic factor of P
is the monomial consisting of all non-dyadic variables. Further, we may write P =

ND, where N consists of non dyadic variables and D consists of dyadic variables.
We use u(P) to denote the number of non-dyadic variables and v(P) = deg(N).
An order (N) among the monomials in F2[t1, . . . , tk] is defined to be: P1 > P2 if
u(P1) > u(P2) or u(P1) = u(P2), v(P1) < v(P2).

We denote
Xh
ω =

∑
(t1)

a1+1 . . . (tr)
ar+1tr+1 . . . tk

for any h ⩽ k and non-dyadic decomposition ω = {a1, . . . ,ar} of h i.e ai ̸= 2m − 1

for each i.

Lemma 2.20 The (N)-leading term of SqIXh
ω is of the form∑

Sω

(t1)
a1+1 . . . (tr)

ar+1SqI(tr+1 . . . tk)

Proof. Note that tr+1, . . . , tk are dyadic in (t1)
a1+1 . . . (tr)

ar+1tr+1 . . . tk, then by
Lemma 2.18, they are still dyadic in SqI(t1)

a1+1 . . . (tr)
ar+1tr+1 . . . tk. Hence

u(SqI(ta1+1
1 . . . (tr)

ar+1tr+1 . . . tk)) ⩽ r (4)
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Iterating Cartan’s formula, the monomials P in the polynomials of the equality 4

with u(P) = r appear in the polynomial

t
a1+1
1 . . . tar+1

r SqI(tr+1 . . . tk) (Type 1)

SqI ′(ta1+1
1 . . . tar+1

r )SqI ′′(tr+1 . . . tk) (Type 2)

Note that the index v of Type 1 polynomial is r + h and the index v of Type 2

polynomial is strictly less than r + h because the Steenrod squares lift the their
degree of dyadic factors (note that |I| > |I ′′|). Therefore, by taking the sum indexed
by all the essential permutations, we have the result.

Lemma 2.21 For any m ⩽ k,

{Xm
ωm

,SqIXm−1
ωm−1

,SqIhXh
ωh

, . . . ,SqIWk} (B)

where Ih runs out the admissible sequences of total m − h and ωh runs out the
non-dyadic decomposition of h.

Observation: No term can be expressed as a linear combination of strictly lower
terms with respect to the order (N). Thus we just need to check the linear inde-
pendence for SqIXh

ωh
, whose leading terms have the same order with respect to

(N).

Proof. According to the observation, we reduce the case to fixed r, h and a specified
order of variables (because if a polynomial is non-zero, its sum of all permutations
is non-zero). Suppose∑

|Iλ|=h

cλ(t1)
a1+1 . . . (tr)

ar+1SqIλ(tr+1 . . . tk) = 0

then we have

(t1)
a1+1 . . . (tr)

ar+1
∑

|Iλ|=h

cλSq
Iλ(tr+1 . . . tk) = 0

By Lemma 2.15, we conclude that cλ = 0 for each λ.

Corollary 2.22 The set (B) Lemma 2.1.2 forms a basis of Hm+k(MO(k)).

Proof. Recall that the Hm+k(MO(k)) is isomorphic to Jm+k. Note that

dim Jm+k = p(m),

the number of decomposition of m. The number of elements in (B) is∑
h⩽m

d(h)c(m− h)

where d(h) is the number of non-dyadic decomposition of h and c(m− h) is the
number of dyadic decomposition of m− h, because d(h) corresponds to the enu-
meration of ωh and c(m− h) corresponds to the number of admissible sequences
of total degree m− h by Proposition 2.11. By directly counting, we have

p(m) =
∑
h⩽m

d(h)c(m− h)

and by Proposition 2.1.2, we complete the proof.
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2.1.3 The homotopy type of MO(k)

Recall that [X,K(A,n)] ∼= Hn(X;A) via Hopf-Whitney’s theorem. Then we let

Fω : MO(k) → K(F2,k+ h)

be a map that represents the homotopy class corresponding to the cohomology class
Xh
ω ∈ Hk+h(MO(k)). Then we have

F : MO(k) → Y := K(F2,k)×K(F2,k+ 2)× · · · ×K(F2, 2k)d(k)

by taking the product of Fω for any h ⩽ k and non-dyadic decomposition ω of h.
Since (B) is a basis of Hk+h(MO(k)), F∗ is an isomorphism from Hk+m(Y; F2) to
Hk+m(MO(k); F2) for m ⩽ k. Then by Whitehead’s theorem and Remark 2.8, we
conclude that F : MO(k) → Y is a 2k-equivalence. Then we let g : Y → MO(k) be the
2k-equivalence inverse of F and if we restrict g to the first factor, then we have

gk : K(F2,k) → MO(k)

such that g∗k(Φk) = ι (recall that the Wk corresponds to the Thom class Φk via the
Thom isomorphism and Wk corresponds to ιk according to the definition of F and
g). In this way, the lifting problem 1 admits a solution if n ⩽ 2k. In other words, if
u ∈ Hk(A; F2) and dimA ⩽ 2k, then u is O(k)-realizable. For a manifold Mn, the
duality theorem provides us with

Hk(Mn) ∼= Hn−k(Mn)

and by Theorem 2.6, if
n ⩽ 2n− 2k

then any homology class in w ∈ Hk(M
n) can be realized by a submanifold. Thus

we have the following theorem

Theorem 2.23 Given a manifold Mn, for any k ⩽ n/2 and any u ∈ Hk(Mn; F2) can
be realized as a submanifold with inclusion.

2.2 On the unoriented Steenrod-Thom theorem

In this subsection, we use the result in previous section to prove the positive answer
the unoriented Steenrod conjecture:

Conjecture 2.24 (Steenrod) For any finite simplicity complex K(polyhedron) and
any homology class u ∈ Hr(K; F2), is there a manifold Mr with a continuous map
f : Mn → K such that u = f∗[Mn]?

For a finite polyhedron K of dimension m, K can be embedded in Rn for n ⩾
2m+ 1 linearly. Then we have a regular open neighbourhood U of K in Rn such
that K is a retract of U and the boundary of U is an n − 1-manifold (details in
[Tho54]).Then let Mn be a closed manifold obtained by gluing two copies of U

along the boundary
Mn = U⊔U/∂U

Let j : U → Mn be an inclusion and let q : Mn → U be the folding map by
identifying the same points of two copies of U, then q ◦ j = idU and thus U is a
retract of Mn. Furthermore, K is a retract of Mn. We let i : K ↪→ Mn be the inclusion
and r : Mn → U be the retraction with respect to i.

Theorem 2.25 For any u ∈ Hr(K) for r ⩽ m = dimK, there exists a manifold Vr

with a continuous map f : Vr → K such that f∗[Vr] = u.

Proof. Since i : U → Mn is a retract, then we may embed Hr(U) into Hr(M
n). Note

that r < m < n/2, then i∗u can be realized by a submanifold Vr of Mn by Theorem
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2.23. Then let f := r ◦ r|Vr : Vr → U is the desired map such that f∗[Vr] = u because
of the community of the following diagram:

K U

Vr Mn

i
jf

r

3 realizing homology classes by oriented mani-
folds

In this section, we discuss the realization problem for integral homology classes by
oriented submanifolds. Recall Theorem 2.6, the realization problem is actually a
homotopy lifting problem

MSO(k)

Mn K(Z, k)

ϕk

f

∃?g (5)

where Mn is an oriented manifold.
In last section, we solve the lifting problem by compute the stable homotopy

type of MO(k). We see that the 2k-homotopy type of MO(k) is a free product of
Eilenberg Mac Lance spaces. However, the homotopy type of MSO(k) is much more
complicated. The first problem is that MSO(k) is not a free product of Eilenberg
Mac Lane spaces and the second problem is that the homotopy groups of MSO(k)

is not p-local for some prime p. To proceed the computation, we need to introduce
Eilenberg Mac Lane k-invariants and Z/p-Steenrod operations for all primes p.

3.1 Twisted product between Eilenberg-MacLane spaces

In last section, we compute that the stable homotopy type of MO(k) is a direct prod-
uct of Eilenberg Mac Lane space. However, in general, given a simply connected
space X, it is not homotopy equivalent to the product K =

∏
i K(πi(X), i), even in

stable case. The question is: how to measure the distance between X and K? Let’s
begin with some baby cases.

Suppose X is a space with two non-trivial homotopy groups with πk(X) = A and
πk+n(X) = B for some 1 < k and n > 0. Obviously, K(A,k)× K(B,k+ n) has the
same homotopy groups as X. Recall the fibration

ΩK(B,k+n+ 1) ∼= K(B,k+n) ↪→ PK(B, k+n+ 1) → K(B,k+n+ 1)

where PK(B,k+n) is the space of paths in K(B,k+n) with compact-open topology.
Then for any h : K(A,k) → K(B,k+n+ 1), we have the following pull-back diagram

Yf PK(B,k+n+ 1)

K(A,k) K(B,k+n+ 1)

g

⌟
p π

h

(6)

where Yh is a simple fiber bundle on K(A,k) with fiber K(B,k + n). Then using
the long exact sequence associated to the the fibration, we conclude that Yh has
the same homotopy groups as K(A,k)× K(B,k+ n). Furthermore, if h ∼ h ′, then
Yh ≃ Yh ′

, since we may view K(B,k + n + 1) as a classifying space of principal
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K(B,k+ n)-bundle. The following proposition indicates that such construction Yh

runs out all the homotopy type with such homotopy groups.

Proposition 3.1 There is bijection between the set of homotopy types with πk = A

and πk+n = B and Hk+n+1(A,k;B)

Proof. According to the classification theorem of principal bundles, we just need to
show there is a bijection between the set of isomorphic classes of principal K(B,n)-
bundles on K(A,k) and the set of homotopy types with πk = A and πk+n = B.

First, we show that every such homotopy type has a representative of such prin-
cipal bundle. Given such a X with πk(X) = A and πk+n(X) = B. By attaching
higher cells to kill elements in πk+n(X), we have a map q : X → K(A,k) that in-
duces isomorphism between the k-th homotopy groups. Then we may replace q by
a fibration as

X N(q) K(A,k)e p

where e is a homotopy equivalence and p is a fibration we need and we may view
N(q) as a fiber bundle on K(A,k) with fiber K(B,k+n) (the long exact sequence of
homotopy groups tells us that the fiber of p is homotopy equivalent to K(B,k+n)).

Conversely, given such a principal bundle E, we just take its total space.

Remark 3.2 From this perspective, we see how cohomology operations determine
homotopy types in some special case. More specifically, if we compare the following
two fibration Yh → K(A,k) as a twisted projection K(A,k)×K(B,k+ n) → K(A,k),
we may view Yh as a product between K(A,k) and K(B,k + n) twisted by a co-
homology operation ϕh : Hk(−;A) → Hk+n(−;B) represented by h : K(A,k) →
K(B,k+ n+ 1). In other words, this twist can be viewed as an obstruction for an
extension problem.

The following two lemmas will be used in later subsections.

Lemma 3.3 Suppose M is a CW-complex and ϕx : M → K(A,k) is a cellular, then
ϕx admits a lifting along Yh → K(A,k) if and only if ϕh(x) = 0, where x = ϕ∗

xι ∈
Hk(M;A).

Proof. Suppose ϕh(x) = 0 i.e h ◦ ϕx is null-homotopic, then we can lift h ◦ ϕx to
j : M → PK(B,k+ n+ 1) along the natural projection. Then the universal property
of the following pull-back diagram provides us with F̂ : M → Yh.

M

Yh PK(B,k+n+ 1)

K(A,k) K(B,k+n+ 1)

F̂

ϕx

j

g

⌟
p e

h

Note that the map F̂ : M → Yh is indeed a lift of ϕx, since the diagram is commute.
Conversely, if we can lift ϕx to the whole Yh, the map ϕx that represents x is

null-homotopic after composition with h according to the construction of Yh, which
means that ϕh(x) = 0.

Lemma 3.4 Let F : M → Yh be a map defined on (k + n)-skeleton, and let x ∈
Hk(M|k+n;A) ∼= Hk(M;A) be the cohomology class represented by p ◦ F. Then we
can extend F to the whole M if and only if ϕh(x) = 0.

Proof. According to obstruction theory, we can extend p ◦ F : M|k+n → K(A,k) to
ϕx : M → K(A,k), because πm(A,k) = 0 for m ⩾ k+ n. Similarly, we can extend
g ◦ F : M|k+n → PK(B, k + n + 1) to g̃ : M → PK(B,k + n + 1) such that e ◦ g̃ =



realizing homology classes by oriented manifolds 10

h ◦ ϕx by using the homotopy extension property with respect to the cofibration
i : M|k+n → M.

M|k+n PK(B,k+n+ 1)

M K(B,k+n+ 1)

g◦F

i e

h◦ϕx

g̃

Then using the universal property of the pull-back, we have F̃ : M → Yh to extend F

M|k+n

M

Yh PK(B, k+n+ 1)

K(A,k) K(B,k+n+ 1)

i

F̃

ϕx

g̃

g

⌟
p e

h

Note that this is indeed an extension of F, due to the uniqueness given by the
universal property.

3.2 Auxiliary construction: Silber’s polyhedron

Differently from the case of MO(k) where we just need to consider F2 coefficient
cohomology and Steenrod squares, we need to consider cohomology operations
with coefficient Z and Fp for odd prime p in the case of MSO(k). Specifically,
we need Bockstein long exact sequence and Bockstein operations to help us derive
integral power operations from mod p Steenrod power operations.

Suppose we have a short exact sequence of abelian groups:

0 G H K 0 (7)

then we have an induced short exact sequence of chain complexes

0 C∗(X;G) C∗(X;H) C∗(X;K) 0

then by the Snake lemma, we have a long exact sequence

· · · Hn(X;G) Hn(X;H) Hn(X;K) Hn+1(X;G) · · ·

The connected morphism Hn(X;K) → Hn+1(X;G) is so called Bockstein homomor-
phism associated to the short sequence 7.

We let β : Hn(X; Fp) → Hn+1(X; Fp) be the Bockstein homomorphism associated
to the short exact sequence

0 Z/p Z/p2 Z/p 0

and we let β̃ : Hn(X; Fp) → Hn(X; Z) be the Bockstein operation associated to the
short exact sequence

0 Z Z Z/p 0
·p
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Let q : Hn(X; Z) → Hn(X; Z/p) be the morphism induced by the quotient map
Z → Z/p and we have β ◦ q = β̃. The detail can be found in Allen Hatcher’s book
[Hat02].

Recall that given an odd prime p and an integer r > 0, the Steenrod opera-
tion St

2r(p−1)+1
p = β ◦ Pr

p where Pr
p is the reduced power operation. For such

St
2r(p−1)+1
p , we can view it as an integral cohomology operation in the following

way:

Hn(X; Z) Hn(X; Z/p) Hn+2r(p−1)(X; Z/p) Hn+2r(p−1)+1(X; Z)
q Pr

p β̃

Here we abuse notation to let St
2r(p−1)+1
p denote such integral power operation

when it does not lead confusion.
Let f : K(Z,k) → K(Z, k+ 5) be the classifying map of St53 as integral operation.

Then the Silber polyhedron K is a fiber bundle with base space K(Z,k) and fiber
K(Z,k+ 4) twisted by f. In other words, K = Yh in the diagram 6 with suitable
adjustment on symbols.

3.2.1 The cohomology ring of Silber’s polyheron

In the rest of the section, we let ι be the fundamental class of K(Z,k) and ν be the
fundamental class of K(Z,k+ 4).

Let F3 : K(Z,k) → K(Z,k) be the map classifying the cohomology operation
operation ·3 : H∗(X; Z) → H∗(X; Z), namely (F3)∗ι = 3ι. Then we let G be the
pull-back bundle of K → K(Z,k):

E K

K(Z,k) K(Z,k)

G

⌟

F3

Note that St53ι is an element of order 3, according to the Bockstein long exact se-
quence. Then we have

(F3)∗St53ι = St53(F
3ι) = St53(3ι) = 0

which means that E is a K(Z,k+ 4)-bundle with trivial twist, i.e. a trivial bundle
E = K(Z,k)×K(Z,k+ 4).

With F2 coefficient, the induced morphism (F3)∗ is an isomorphism, and then G∗

is an isomorphism on the E2 pages of the corresponding Serre spectral sequences.
Thus G∗ indcues an isomorphism between H∗(K; F2) and H∗(K(Z, k) × K(Z,k +

4); F2). Similarly, for Fp coefficient with p > 3, we still have the isomorphism

H∗(K; Fp) ∼= H∗(K(Z,k)×K(Z,k+ 4); Fp)

The subtle calculation is the case of F3 coefficient. The following diagram E2-page
with higher differentials of the fiber bundle K in F3-cohomology:
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k+ 9 St53ν

k+ 8 St43ν

k+ 4 ν

0 ι St43ι St53ι St83ι St93ι •

0 k k+ 4 k+ 5 k+ 8 k+ 9

dk+5

dk+9

dk+10

The calculation of differentials are presented as follows:

• dk+5(ν) = St53ι according to the construction of K;

• dk+9(St
4
3ν) = St43dk+5(ν) = St43St

5
3ι = St93ι because Steenrod operations

commute with transgressions;

• dk+10(St
5
3ν) = St53St

5
3ι = 0;

Passing to E∞-page, the circled elements in the following diagram survive to
while the squared elements vanish.

k+ 9 St53ν

k+ 8 St43ν

k+ 4 ν

0 ι St43ι St53ι St83ι St93ι •

0 k k+ 4 k+ 5 k+ 8 k+ 9

Therefore, we have nontrivial cohomology groups of degree less than k+ 10 in
H∗(K; F3) as follows:

• Hk(K; F3) = F3 · ι;

• Hk+4(K; F3) = F3 · St43ι;

• Hk+8(K; F3) = F3 · St83ι;

• Hk+9(K; F3) = F3 · St53ν;

In next subsection, we will use the cohomological properties of K to compute the
lower homotopy type of MSO(k).
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3.3 Computing the homotopy type of MSO(k)

In this subsection, our task is to use Theorem 2.7 and the Silber polyhedron K to
compute the lower homotopy type of MSO(k).

Before we compute the homotopy type of MSO(k), we need some information
about cohomology groups of MSO(k). By using Thom isomorphism, we just need
to study the integral cohomology ring of BSO(k).

Theorem 3.5 H∗(BSO(k); F2) = F2[W2, . . . ,Wk] where Wi is the Stiefel-Whitney
class of the universal bundle.

Proof. See Theorem 12.4 in [MS74].

Theorem 3.6 If R is an integral domain containing 1/2, then the cohomology ring
H∗(BSO(2k+ 1);R) is a polynomial ring over R generated by the Pontrjagin classes
P1, . . . ,Pm of the universal oriented bundle.

Similarly, H∗(BSO(2k);R) is a polynomial ring over R generated by the Pontrjagin
classes P1, . . . ,Pm−1 and the Euler class E of the universal oriented bundle.

Proof. See Theorem 15.9 in [MS74].

Brown gave the follow theorem to write down the integral cohomology ring ex-
plicitly in [Bro82]:

Theorem 3.7 Let ξk be the universal vector bundle over BSO(k) and we just let
pi = (−1)ic2q(ξk ⊗ C) be the i-th Pontrjagin class of ξk; let β̃ : H∗(BSO(k); Z/2) →
H∗+1(BSO(k); Z) be the Bockstein homomorphism as we mentioned last subsection;
let wi be the Stiefel-Whitney class of ξk in Hi(BSO(k); F2). Then we let

Rk = Z[p1, . . . ,p[(k−1)/2],Xk, β̃(w2i1 · . . . w2il | 0 < i1 < · · · < il ⩽ [(k− 1)/2])

and let Ik be an ideal in Rk generated by the following relations:

1. 2β̃(w2i1 · · · · ·w2il) = 0;

2. Xk = β̃(w2n) if k = 2n+ 1;

3. For I = {i1, . . . , is}, we write w(I) = w2i1 · · · · ·w2is and p(I) = pi1 · · · · · pis ,
then the relation is

β̃(w(2I)) · β̃(w(2j)) =
∑
i∈I

(β̃w2i) ·p((I− {i})∩ J) · β̃(w(2((I− {i})∪ J−(I− {i})∩ J)))

Then
H∗(BSO(k); Z) = Rk/Ik

Furthermore, if we let q : H∗(BSO(k); Z) → H∗(BSO(k); Z/p) be the quotient map,
then q(pq) = W2

2q in Theorem 3.5, if p = 2; q(pi) = Pi in H∗(BSO(k); Z/p) in
Theorem 3.6 if p is an odd prime.

By taking a suitable cellular decomposition, we may assume K(Z,k) has only one
k-cell and one 0-cell that represents the fundamental class and K(Z,k) has no i-cells
for 0 < i < k. With this setting, we have that K and K(Z,k)× K(Z,k+ 4) have the
same (k+ 4)-skeleton: it should be the (k+ 4)-skeleton of the base space K(Z,k)
plus the unique (k+ 4)-cell of K(Z,k+ 4) over the only 0-cell of K(Z,k).

First, we have a cellular map

j : MSO(k) → K(Z,k)×K(Z,k+ 4)

induced by the integral Thom class ΦSO(k) and ΦSO(k) ·p1 ∈ Hk+4(MSO(k); Z) ∼=

ΦSO(k) ·H4(BSO(k); Z). Since, K(Z,k)×K(Z,k+ 4)|k+4 = K|k+4, we have

j|k+4 : MSO(k)|k+4 → K|k+4 ⊂ K
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Note that St53ΦSO(k) = St53(ΦSO(k)p1) = 0, because cohomology groups of BSO(k)

has no odd torsion (see Section 3 in [BS53], especially 3.1 and 3.5). Then by Lemma
3.4, we can extend j|k+4 to f : MSO(k) → K.

Recall that H∗(BSO(k); F2) = F2[W2, . . . ,Wk] and H∗(MSO(k); F2) = ΦSO(k) ·
H∗(BSO(k) via Thom isomorphism. Therefore, we have ΦSO(k)W2W3 ∈ Hk+5(MSO(k); F2)

and we let
g : MSO(k) → K(Z/2,k+ 5)

to represent this cohomology class. Eventually, we have

F = f× g : MSO(k) → Y := K×K(Z/2,k+ 5)

Proposition 3.8 F : MSO(k) → Y is a (k+ 7)-equivalence.

Proof. We will prove this proposition prime by prime according to Theorem 2.7.
We use the following convention in this proof:

• ι: the image of the fundamental class of K(Z,k);

• ν: the image of the fundamental class of K(Z,k+ 4);

• ι ′: the image of the fundamental class of K(Z/2,k+ 5);

The F2-cohomology case: The calculation in previous subsection shows that

H ∗ (K; F2) ∼= H∗(Z,k; F2)⊗H∗(Z,k+ 4; F2)

then the image of F∗ can be written explicitly into the following table, according
to the construction of F and Theorem 3.7. Specifically, we have F∗ι = ΦSO(k),
F∗ν = ΦSO(k)W

2
2 and F∗ι ′ = ΦSO(k)W2W3 according to the construction of F.

Dimension Generators in H∗(Y; F2) Image of F∗ in H∗(MSO(k); F2)

k ι ΦSO(k)

k+1 0 0

k+2 Sq2ι ΦSO(k)W2

k+3 Sq3ι ΦSO(k)W3

k+4 Sq4ι ΦSO(k)W4

ν ΦSO(k)(W2)
2

k+5 Sq5ι ΦSO(k)W5

ι ′ ΦSO(k)W2W3

k+6 Sq6ι ΦSO(k)W6

Sq4Sq2ι ΦSO(k)(W2W4 +W2
3 +W3

2)

Sq2ν ΦSO(k)(W
3
2 +W2

3)

Sq1ι ′ = ΦSO(k)(W
2
3)

k+7 Sq7ι ΦSO(k)W7

Sq5Sq2ι ΦSO(k)(W5W2 +W4W3 +W3W
2
2)

Sq3ν ΦSO(k)(W3W
2
2)

Sq2ι ′ ΦSO(k)W2(W5 +W3W2)

k+8 Sq8ι ΦSO(k)W8

Sq6Sq2ι ΦSO(k)(W6W2 +W5W3 +W4W
2
2))

Sq4ν ΦSO(k)(W4W
2
2 +W2W

2
3 +W4W

2
2))

Sq3ι ′ ΦSO(k)(W5W3)

Sq2Sq1ι ΦSO(k)W2W
2
3)

According to this table, we can see that F∗ is an isomorphism when dimension is
less than k+ 8 and F∗ is a monomorphism in dimension k+ 8.

For Fp-cohomology on MSO(k) with odd prime p, we have the following theo-
rem.

The F3-cohomology case: Note that the factor K(Z/2,k+ 5) is trivial. Thus we
have the following diagram:
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Dimension Generators in H∗(Y; F3) Image of F∗ in H∗(MSO(k); F3)

k ι ΦSO(k)

k+4 St43ι ΦSO(k)P4
k+8 St83ι ΦSO(k)(P

2
4 + 2P8)

The F5-cohomology case: Similarly to the F5 case, we have

Dimension Generators in H∗(Y; F3) Image of F∗ in H∗(MSO(k); F3)

k ι ΦSO(k)

k+4 ν ΦSO(k)P4
k+8 St85ι ΦSO(k)(P

2
4 + 2P8)

The Fp-cohomology case for p > 5:

Dimension Generators in H∗(Y; F3) Image of F∗ in H∗(MSO(k); F3)

k ι ΦSO(k)

k+4 ν ΦSO(k)P4
k+8 0 0

where the Steenrod operation on H∗(BSO(k); Fp) can be found in [BS53]. According
to these results, we conclude that F is a k+ 7-equivalence.

Corollary 3.9 For i ⩽ 7, the stable homotopy groups of MSO(k) are presented as
the following table:

i πk+i(MSO(k))

0 Z

1,2,3 0

4 Z

5 Z/2

6,7 0

With such (k+ 7)-equivalence, we can modify the lifting problem (5) into

MSO(k) K×K(Z/2,k+ 5)

Mn K(Z,k)

ϕk

F

p

f

∃?g (8)

where p is the natural projection to the base space of K.
If k > 8 and n < k+ 8, an integral cohomology class x ∈ Hk(Mn; Z) represented

by f : Mn → K(Z,k). Then if St53(x) = 0, we can lift f to f̃ : Mn → K×K(Z/2,k+ 5)

according to Lemma 3.3. Let F−1 be the (k + 7)-inverse of F, then g := F−1 ◦ f̃
is the desired answer to the homotopy lifting problem. In summary, we have the
following theorem:

Theorem 3.10 For k > 8, an integral k-dimensional cohomology class x of a (k+ 8)

dimensional complex is realizable with respect to SO(k) if and only if the integral
class St53(x) = 0.

In other words, St53x is the obstruction of a cohomology class to be realized by an
oriented manifold.

4 generalized method: postnikov tower
For general cases of simply connected spaces with more complicated homotopy
groups, we just iterate previous construction to obtain a tower consists of such
fibrations called Postnikov tower.



generalized method: postnikov tower 16

Definition 4.1 Let p : X → Y be a fibration with homotopy fiber F. Then we say p is
a principal fibration if there exists a space B with a homotopy equivalent ΩB ≃ F

and a map f : Y → B such that p : X → Y is homotopy equivalent to the pull back of
the fibration PB → B along f.

Theorem 4.2 Suppose X is a path connected space, there exists a commutative dia-
gram

...

X[i+ 1]

X[i]

...

X[2]

X[1]

X ∗

pi+1

pi

p3

p2

j1

j2

ji

ji+1

such that

1. πnX[i] = 0 for n > i;

2. ji is an i+ 1-equivalence;

3. pi : X[i] → X[i− 1] is a principal fibration with homotopy fiber K(πi(X), i);

4. the natural map X → limi X[i] is a weak equivalence.

This tower is Postnikov tower of X with principal fibrations.
Since the pk is principal, then we have

K(πi(X), i) X[i]

X[k− 1] K(πi(X), i+ 1)

pi

ki−1

The cohomology class in Hi+1(X[i− 1];πi(X)) representing by ki−1 is the i− 1-st
k-invariant of X.

Corollary 4.3 Suppose X is a simply connected space. For any F : Y → X[i− 1], there
is a uniquely determined class f∗ki−1 ∈ Hi+1(Y,πi(X)). Then f can be lifted to X[i]

along the principal fibration pi : X[i] → X[i− 1] if and only if f∗ki−1 = 0.

In this way, to solve a homotopy lift problem, we can use the ladders of principal
fibrations in the Postnikov tower to exhibit the obstruction of the lifting problem as
the pullback of k-invariants.
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