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Motivation

Motivation

To classify, simplify and compute with geometric objects, algebraic
invariants are useful.

Table: Methods of algebraic topology

Geometric objects Algebraic objects

CW complexes Numbers
Manifolds Chosen invariants Groups
Schemes −→ Rings
Data sets Chain complexes
· · · · · ·

Geometric Morphisms Algebraic Morphisms

Homotopy −→ Equality
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The use of homology theory

Example

2-dimensional sphere S2 is not homotopy equivalent to
2-dimensional torus T 2:

H1(S
2;Z) = 0 6= H1(T

2;Z) = Z⊕ Z

This means that there is no non-trivial one dimensional hole on S2

while there are two non-trivial and unequivalent one dimensional
hols on T 2.

The naive idea to construct invariants is to count “holes”.
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The blindness of homology theory

Example

Let’s compare CP2 and S2 ∨ S4.

Table: The homology groups of X and A with Z coefficient

H0 H1 H2 H3 H4 · · ·
CP2 Z 0 Z 0 Z 0

S2 ∨ S4 Z 0 Z 0 Z 0

The homology groups do not help.
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The use of cohomology ring

If we just take cohomology groups, there is no difference:

Table: The cohomology groups of X and A with Z coefficient

H0 H1 H2 H3 H4 · · ·
CP2 Z 0 Z 0 Z 0

S2 ∨ S4 Z 0 Z 0 Z 0

By considering the cup product structure

^: Hp(X)×Hq(X) −→ Hp+q(X)

H∗(X) is a commutative graded ring, which gives sharper
algebraic pictures than homology groups.
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The use of cohomology ring

Back to the case that CP2;Z) = Z[u]/(u3) and S2 ∨ S4. We use
the following facts to show that they are not homotopy equivalent.

1 H∗(CP2;Z) = Z[u]/(u3), where u is a generator of
H2(CP2;Z). In particular, u2 = u ^ u generates
H4(CP2;Z).

2 The cup product structure on H∗(S2 ∨ S4;Z) is trivial,
namely, u ^ v = 0 for any two cohomology class u, v.

3 H∗(CP2;Z) is never isomorphic to H∗(S2 ∨ S4;Z).
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Blindness of cohomology theory

Due to the cup product structure, cohomology theory present
sharper algebraic picture than homology theory. However, there are
some spaces with trivial cup product structure.

Proposition

For any space X, the cup product structure on H∗(ΣX) is trivial.

We cannot distinguish ΣCP2 and Σ(S2 ∨ S4) = S3 ∨ S5 by
cohomology theory! It is blindness of cohomology.

Goal: Cure the blindness.

Method: Construct more invariants.
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The use of cohomology operations

Definition (Cohomology operations)

Let n,m be two integers and G, π be two abelian groups. A
cohomology operation T of type (n,G;m,π) is a collection of
functions {TX} for each space X

TX : Hn(X;G) −→ Hm(X;π)

such that for any continuous mapping f : X → Y , we have
f∗TY = TXf

∗.
Let Σ∗ : Hn(X) ∼= Hn+1(Σ) be the suspension isomorphism. If
Σ∗T = TΣ∗, then T is a stable cohomology operation.

1 O(n,G;m,π): the collection of cohomology operations of
type (n,G;m,π).

2 Stab(n,G;m,π): the collection of stable cohomology
operations of type (n,G;m,π).
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The use of cohomology operations

The simplest non-trivial cohomology operations are Steenrod
squares(a special case of Steenrod operations).

Definition (Steenrod squares)

Steenrod squares is a collection of stable cohomology operations

Sqi : Hq(X;F2) −→ Hq+i(X;F2), ∀q, i ≥ 0

that satisfying the following properties:

1 Sqi are consists of group homomorphisms,

2 Sq0 = id,

3 Sqnu = u ^ u if dimu = n,

4 Sqiu = 0 if i > dimu,

5 Sqi(u ^ v) =
∑j

i=0 Sq
iu ^ Sqj−iv (Cartan’s formula).
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The use of cohomology operations

Theorem (Serre)

There exists cohomology operations that satisfying all the
properties of Steenrod squares and they are unique.

Sketch proof:

1 Hn(X;G) = [X,K(G,n)], where G is an abelian group and
K(G,n) is the Eilenberg-Maclane space.

2 By Yoneda lemma, there is an one-one correspondence
between O(n,G;m,π) and Hm(K(π, n);G).

3 For any abelian group G and suitable integer n, there is a
fibration where the total space is contractible, the based space
is K(G,n) and the fiber is K(G,n− 1).

4 Use Leray-Serre spectral sequence and transgressions to prove
the theorem.
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The use of cohomology operations

Let’s back to the example of ΣCP2 and S3 ∨ S5:

Suppose there is a homotopy equivalence f : S3 ∨ S5 → ΣCP2,
then we consider the Steenrod square

Sq2 : H3(ΣCP2;Z) −→ H5(ΣCP2;Z)

Let u be a generator of H2(CP2;Z), then by the suspension
isomorphism, Σ∗u is a generator of H3(ΣCP2;Z).According to the
definition, Sq2Σ∗u = Σ∗Sq2u = Σ∗(u2) 6= 0, a generator of
H5(ΣCP2;Z).

However, f∗Sq2Σ∗u = Σ∗Sq2f∗u = Σ∗(f∗u)2 = 0, which leads to
contradiction!
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definition, Sq2Σ∗u = Σ∗Sq2u = Σ∗(u2) 6= 0, a generator of
H5(ΣCP2;Z).

However, f∗Sq2Σ∗u = Σ∗Sq2f∗u = Σ∗(f∗u)2 = 0, which leads to
contradiction!
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Construction of Steenrod squares

Recall the construction of cup product. Suppose X is a complex,
the diagonal map

D : X −→ X ×X
x 7−→ (x, x)

induces

D∗ : C∗(X)⊗ C∗(X) ' C∗(X ×X) −→ C∗(X)

where the equivalence ' is given by Eilenberg-Zilber.
To compute cup product, we need to compute

D∗ : C∗(X) −→ C∗(X)⊗ C∗(X)
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Construction of Steenrod squares

If D is a simplicial map, then D∗ is clearly. However, D is NOT
simplicial for any non-trivial case.

By Alexander-Whitney approximation, there is a simplicial map D0

such that D ' D0 and specifically

D0 : [v0, . . . , vn] 7→
n∑

p=0

[v0, . . . , vp]× [vp, . . . , vn]
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Construction of Steenrod squares

Let F2 act on X ×X by

T : X ×X −→ X ×X
(x, y) 7−→ (y, x)

Observation: TD = D while TD0 6= D0.

Tongtong Liang An Introduction to Steenrod Operations



Construction of Steenrod squares

Fact: There is no T -invariant simplicial approximation for the
non-trivial diagonal map.

Problem: Lack of symmetry.

Idea: Measure the derivation from the symmetry.
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Construction of Steenrod squares

1 Although TD0 and D0 are not strictly equal, they are
homotopic.

2 Let D1 be the chain homotopy from D0 to TD0, where D1

carries some information of derivation from the symmetry.

3 D1 is not T -invariant, there is still some derivation from
symmetry.

4 D1 + TD1 is a chain homotopy from D0 to itself.

5 By acyclic carrier theorem, D1 + TD1 is homotopic to the
constant homotopy of D0.

6 Let D2 be the homotopy from D1 + TD1 to the constant
homotopy.

7 D2 is not T -invariant, there is still some derivation from
symmetry.

8 D2 − TD2 is a homotopy from D1 + TD1 to itself.
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Construction of Steenrod squares

We have a collection of chain homotopies {Di}∞n≥0 and they are
higher homotopies.

Definition (cup-i product)

For u ∈ Cp(X) and v ∈ Cq(X), we define the cup-i product by

u ^i v · σ := u⊗ v ·Di(σ)

for each p+ q − i cell σ.
In particular, when i = 0, ^0 is cup product.

Remark

Cup-i products are the higher version of cup product. If we just
consider the cup product, we will loss the higher information.
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Construction of Steenrod squares

Proposition (Coboundary formula)

With F2 coefficients, we have

δ(u ^i v) = u ^i−1 v + v ^i−1 u+ δu ^i−1 v + u ^i δv

Corollary

With F2 coefficients, if u is a p dimensional cocycle, then u ^j u
is a 2p− j dimensional cocycle for each j.

Theorem

We define

Sqi : Hp(X;F2) −→ Hp+i(X;F2)
u 7−→ u ^p−i u

and it is exactly Steenrod square.
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The Steenrod algebra

Definition (The Steenrod algebra)

Let Stab(r;F2) be the collection of stable cohomology operations
of type (n,F2;n+ r,F2). Then we define a graded F2 algebra by

A2 :=
⊕
r≥0
Stab(r,F2)

where the multiplication is given by composition.

Theorem

A2 is generated by Steenrod squares {Sqi}i≥0.

Cohomology groups  Cohomology ring  Graded A2-module
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Further topic

To explain the phenomenon more clearly, we need operad theory.
For example, there is an E∞-operad C where C(2) encode all Di.
The structure is called E∞ algebra.

Theorem (May)

Every E∞ algebra has Steenrod operations naturally.

Theorem (Mandell)

The singular cochain complex of a space is an E∞ algebra in a
canonical way.

Theorem (Mandell)

Suppose X,Y are simply connected spaces, a continuous map
f : X → Y induces a quasi-isomorphism between C∗(Y ) and
C∗(X) as E∞ algebra, if and only if f is a weak homotopy
equivalence.
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Thank you.
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