An Introduction to Steenrod Operations

Tongtong Liang

Southern University of Science and Technology, China

USTC & SUSTech Meeting

Motivation

To classify, simplify and compute with geometric objects, algebraic invariants are useful.

Geometric objects		Algebraic objects
CW complexes		Numbers
Manifolds	Chosen invariants	Groups
Schemes	\longrightarrow	Rings
Data sets		Chain complexes
Geometric Morphisms		Algebraic Morphisms
Homotopy	\longrightarrow	Equality

Motivation

To classify, simplify and compute with geometric objects, algebraic invariants are useful.

Geometric objects		Algebraic objects
CW complexes		Numbers
Manifolds	Chosen invariants	Groups
Schemes	\longrightarrow	Rings
Data sets		Chain complexes
• • •		
Geometric Morphisms		Algebraic Morphisms
Homotopy	\longrightarrow	Equality
	• 	《曰》《聞》《臣》《臣》 [] [] []

Motivation

To classify, simplify and compute with geometric objects, algebraic invariants are useful.

Geometric objects		Algebraic objects
CW complexes		Numbers
Manifolds	Chosen invariants	Groups
Schemes	\longrightarrow	Rings
Data sets		Chain complexes
• • •		
Geometric Morphisms		Algebraic Morphisms
Homotopy	\longrightarrow	Equality
	• •	《曰》《聞》《臣》《臣》 [] [] []

Motivation

To classify, simplify and compute with geometric objects, algebraic invariants are useful.

Geometric objects		Algebraic objects
CW complexes		Numbers
Manifolds	Chosen invariants	Groups
Schemes	\longrightarrow	Rings
Data sets		Chain complexes
• • •		
Geometric Morphisms		Algebraic Morphisms
Homotopy	\longrightarrow	Equality
	·	· 《曰》《聞》《臣》《臣》 [] [] []

2-dimensional sphere S^2 is not homotopy equivalent to 2-dimensional torus T^2 :

$$H_1(S^2;\mathbb{Z}) = 0 \neq H_1(T^2;\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}$$

This means that there is no non-trivial one dimensional hole on S^2 while there are two non-trivial and unequivalent one dimensional hols on T^2 .

2-dimensional sphere S^2 is not homotopy equivalent to 2-dimensional torus T^2 :

$$H_1(S^2;\mathbb{Z}) = 0 \neq H_1(T^2;\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}$$

This means that there is no non-trivial one dimensional hole on S^2 while there are two non-trivial and unequivalent one dimensional hols on T^2 .

2-dimensional sphere S^2 is not homotopy equivalent to 2-dimensional torus T^2 :

$$H_1(S^2;\mathbb{Z}) = 0 \neq H_1(T^2;\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}$$

This means that there is no non-trivial one dimensional hole on S^2 while there are two non-trivial and unequivalent one dimensional hols on T^2 .

2-dimensional sphere S^2 is not homotopy equivalent to 2-dimensional torus T^2 :

$$H_1(S^2;\mathbb{Z}) = 0 \neq H_1(T^2;\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}$$

This means that there is no non-trivial one dimensional hole on S^2 while there are two non-trivial and unequivalent one dimensional hols on T^2 .

The use of homology theory

æ

< ∃ >

Let's compare \mathbb{CP}^2 and $S^2 \vee S^4$.

Table: The homology groups of X and A with \mathbb{Z} coefficient

	H_0	H_1	H_2	H_3	H_4	• • •
\mathbb{CP}^2	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
$S^2 \vee S^4$	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0

The homology groups do not help.

(b) (4) (3) (4)

Let's compare \mathbb{CP}^2 and $S^2 \vee S^4$.

Table: The homology groups of X and A with \mathbb{Z} coefficient

	H_0	H_1	H_2	H_3	H_4	
\mathbb{CP}^2	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
$S^2 \vee S^4$	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0

The homology groups do not help.

Let's compare \mathbb{CP}^2 and $S^2 \vee S^4$.

Table: The homology groups of X and A with \mathbb{Z} coefficient

	H_0	H_1	H_2	H_3	H_4	
\mathbb{CP}^2	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
$S^2 \vee S^4$	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0

The homology groups do not help.

If we just take cohomology groups, there is no difference:

Table: The cohomology groups of X and A with Z coefficient H^0 H^1 H^2 H^3 H^4 \cdots \mathbb{CP}^2 Z0Z0Z $S^2 \vee S^4$ Z0Z0Z0

By considering the cup product structure

$$\smile: H^p(X) \times H^q(X) \longrightarrow H^{p+q}(X)$$

 $H^*(X)$ is a commutative graded ring, which gives sharper algebraic pictures than homology groups.

伺 ト イヨ ト イヨ ト

If we just take cohomology groups, there is no difference:

By considering the cup product structure

 $\smile: H^p(X) \times H^q(X) \longrightarrow H^{p+q}(X)$

 $H^*(X)$ is a commutative graded ring, which gives sharper algebraic pictures than homology groups.

If we just take cohomology groups, there is no difference:

By considering the cup product structure

$$\smile: H^p(X) \times H^q(X) \longrightarrow H^{p+q}(X)$$

 $H^*(X)$ is a commutative graded ring, which gives sharper algebraic pictures than homology groups.

- $H^*(\mathbb{CP}^2;\mathbb{Z}) = \mathbb{Z}[u]/(u^3)$, where u is a generator of $H^2(\mathbb{CP}^2;\mathbb{Z})$. In particular, $u^2 = u \smile u$ generates $H^4(\mathbb{CP}^2;\mathbb{Z})$.
- 2 The cup product structure on $H^*(S^2 \vee S^4; \mathbb{Z})$ is trivial, namely, $u \smile v = 0$ for any two cohomology class u, v.

- $H^*(\mathbb{CP}^2;\mathbb{Z}) = \mathbb{Z}[u]/(u^3)$, where u is a generator of $H^2(\mathbb{CP}^2;\mathbb{Z})$. In particular, $u^2 = u \smile u$ generates $H^4(\mathbb{CP}^2;\mathbb{Z})$.
- ② The cup product structure on $H^*(S^2 \vee S^4; \mathbb{Z})$ is trivial, namely, $u \smile v = 0$ for any two cohomology class u, v.

- $H^*(\mathbb{CP}^2;\mathbb{Z}) = \mathbb{Z}[u]/(u^3)$, where u is a generator of $H^2(\mathbb{CP}^2;\mathbb{Z})$. In particular, $u^2 = u \smile u$ generates $H^4(\mathbb{CP}^2;\mathbb{Z})$.
- ② The cup product structure on $H^*(S^2 ∨ S^4; \mathbb{Z})$ is trivial, namely, $u \smile v = 0$ for any two cohomology class u, v.

• $H^*(\mathbb{CP}^2;\mathbb{Z})$ is never isomorphic to $H^*(S^2 \vee S^4;\mathbb{Z})$.

- $H^*(\mathbb{CP}^2;\mathbb{Z}) = \mathbb{Z}[u]/(u^3)$, where u is a generator of $H^2(\mathbb{CP}^2;\mathbb{Z})$. In particular, $u^2 = u \smile u$ generates $H^4(\mathbb{CP}^2;\mathbb{Z})$.
- ② The cup product structure on $H^*(S^2 \vee S^4; \mathbb{Z})$ is trivial, namely, $u \smile v = 0$ for any two cohomology class u, v.

Proposition

For any space X, the cup product structure on $H^*(\Sigma X)$ is trivial.

We cannot distinguish $\Sigma \mathbb{CP}^2$ and $\Sigma(S^2 \vee S^4) = S^3 \vee S^5$ by cohomology theory! It is blindness of cohomology.

Goal: Cure the blindness.

Proposition

For any space X, the cup product structure on $H^*(\Sigma X)$ is trivial.

We cannot distinguish $\Sigma \mathbb{CP}^2$ and $\Sigma(S^2 \vee S^4) = S^3 \vee S^5$ by cohomology theory! It is blindness of cohomology.

Goal: Cure the blindness.

Proposition

For any space X, the cup product structure on $H^*(\Sigma X)$ is trivial.

We cannot distinguish $\Sigma \mathbb{CP}^2$ and $\Sigma(S^2 \vee S^4) = S^3 \vee S^5$ by cohomology theory! It is blindness of cohomology.

Goal: Cure the blindness.

Proposition

For any space X, the cup product structure on $H^*(\Sigma X)$ is trivial.

We cannot distinguish $\Sigma \mathbb{CP}^2$ and $\Sigma(S^2 \vee S^4) = S^3 \vee S^5$ by cohomology theory! It is blindness of cohomology.

Goal: Cure the blindness.

Proposition

For any space X, the cup product structure on $H^*(\Sigma X)$ is trivial.

We cannot distinguish $\Sigma \mathbb{CP}^2$ and $\Sigma(S^2 \vee S^4) = S^3 \vee S^5$ by cohomology theory! It is blindness of cohomology.

Goal: Cure the blindness.

Let n, m be two integers and G, π be two abelian groups. A cohomology operation T of type $(n, G; m, \pi)$ is a collection of functions $\{T_X\}$ for each space X

 $T_X: H^n(X;G) \longrightarrow H^m(X;\pi)$

- O(n, G; m, π): the collection of cohomology operations of type (n, G; m, π).
- ② $Stab(n, G; m, \pi)$: the collection of stable cohomology operations of type $(n, G; m, \pi)$.

Let n, m be two integers and G, π be two abelian groups. A cohomology operation T of type $(n, G; m, \pi)$ is a collection of functions $\{T_X\}$ for each space X

 $T_X: H^n(X;G) \longrightarrow H^m(X;\pi)$

- O(n, G; m, π): the collection of cohomology operations of type (n, G; m, π).
- ② $Stab(n, G; m, \pi)$: the collection of stable cohomology operations of type $(n, G; m, \pi)$.

Let n, m be two integers and G, π be two abelian groups. A cohomology operation T of type $(n, G; m, \pi)$ is a collection of functions $\{T_X\}$ for each space X

 $T_X: H^n(X;G) \longrightarrow H^m(X;\pi)$

- O(n,G;m,π): the collection of cohomology operations of type (n,G;m,π).
- ② $Stab(n, G; m, \pi)$: the collection of stable cohomology operations of type $(n, G; m, \pi)$.

Let n, m be two integers and G, π be two abelian groups. A cohomology operation T of type $(n, G; m, \pi)$ is a collection of functions $\{T_X\}$ for each space X

 $T_X: H^n(X;G) \longrightarrow H^m(X;\pi)$

- O(n,G;m,π): the collection of cohomology operations of type (n,G;m,π).
- **2** $Stab(n, G; m, \pi)$: the collection of stable cohomology operations of type $(n, G; m, \pi)$.

The use of cohomology operations

The simplest non-trivial cohomology operations are **Steenrod** squares(a special case of Steenrod operations).

Definition (Steenrod squares)

Steenrod squares is a collection of stable cohomology operations

$$Sq^i \colon H^q(X; \mathbb{F}_2) \longrightarrow H^{q+i}(X; \mathbb{F}_2), \ \forall q, i \ge 0$$

that satisfying the following properties:

- ${f 0}~~Sq^i$ are consists of group homomorphisms,
- $2 \ Sq^0 = id,$
- $Sq^iu = 0$ if $i > \dim u$,

④ $Sq^i(u\smile v)=\sum_{i=0}^j Sq^iu\smile Sq^{j-i}v$ (Cartan's formula).

イロト イポト イラト イラト

Definition (Steenrod squares)

Steenrod squares is a collection of stable cohomology operations

$$Sq^i \colon H^q(X; \mathbb{F}_2) \longrightarrow H^{q+i}(X; \mathbb{F}_2), \ \forall q, i \ge 0$$

that satisfying the following properties:

$$2 \ Sq^0 = id,$$

$$I \quad Sq^n u = u \smile u \text{ if } \dim u = n,$$

•
$$Sq^iu = 0$$
 if $i > \dim u$,

• $Sq^{i}(u \smile v) = \sum_{i=0}^{j} Sq^{i}u \smile Sq^{j-i}v$ (Cartan's formula).

イロト イポト イヨト イヨト

Definition (Steenrod squares)

Steenrod squares is a collection of stable cohomology operations

$$Sq^i \colon H^q(X; \mathbb{F}_2) \longrightarrow H^{q+i}(X; \mathbb{F}_2), \ \forall q, i \ge 0$$

that satisfying the following properties:

 $\ \, {\rm O} \ \, Sq^i \ \, {\rm are \ \, consists \ of \ \, group \ \, homomorphisms,}$

$$2 \ Sq^0 = id,$$

$$I \quad Sq^n u = u \smile u \text{ if } \dim u = n,$$

•
$$Sq^iu = 0$$
 if $i > \dim u$,

• $Sq^{i}(u \smile v) = \sum_{i=0}^{j} Sq^{i}u \smile Sq^{j-i}v$ (Cartan's formula).

(日) (同) (三) (三) (二)

Definition (Steenrod squares)

Steenrod squares is a collection of stable cohomology operations

$$Sq^i \colon H^q(X; \mathbb{F}_2) \longrightarrow H^{q+i}(X; \mathbb{F}_2), \ \forall q, i \ge 0$$

that satisfying the following properties:

- Sqⁱ are consists of group homomorphisms,
- $2 Sq^0 = id,$
- $I \quad Sq^n u = u \smile u \text{ if } \dim u = n,$
- $I Sq^i u = 0 \ if \ i > \dim u,$

 $\label{eq:sqi} {\it S}q^i(u\smile v) = \textstyle \sum_{i=0}^j Sq^iu \smile Sq^{j-i}v \ \mbox{(Cartan's formula)}.$

イロト イポト イヨト イヨト

Definition (Steenrod squares)

Steenrod squares is a collection of stable cohomology operations

$$Sq^i \colon H^q(X; \mathbb{F}_2) \longrightarrow H^{q+i}(X; \mathbb{F}_2), \ \forall q, i \ge 0$$

that satisfying the following properties:

 $\ \, {\rm O} \ \, Sq^i \ \, {\rm are \ \, consists \ of \ \, group \ \, homomorphisms,}$

$$2 Sq^0 = id,$$

3
$$Sq^nu = u \smile u$$
 if dim $u = n$,

•
$$Sq^iu = 0$$
 if $i > \dim u$,

• $Sq^{i}(u \smile v) = \sum_{i=0}^{j} Sq^{i}u \smile Sq^{j-i}v$ (Cartan's formula).

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶

Definition (Steenrod squares)

Steenrod squares is a collection of stable cohomology operations

$$Sq^i \colon H^q(X; \mathbb{F}_2) \longrightarrow H^{q+i}(X; \mathbb{F}_2), \ \forall q, i \ge 0$$

that satisfying the following properties:

 $\ \, {\rm O} \ \, Sq^i \ \, {\rm are \ \, consists \ of \ \, group \ \, homomorphisms,}$

$$2 Sq^0 = id,$$

$$I \quad Sq^n u = u \smile u \text{ if } \dim u = n,$$

$$I Sq^iu = 0 \text{ if } i > \dim u,$$

• $Sq^{i}(u \smile v) = \sum_{i=0}^{j} Sq^{i}u \smile Sq^{j-i}v$ (Cartan's formula).

(日) (同) (三) (三) (二)

Definition (Steenrod squares)

Steenrod squares is a collection of stable cohomology operations

$$Sq^i \colon H^q(X; \mathbb{F}_2) \longrightarrow H^{q+i}(X; \mathbb{F}_2), \ \forall q, i \ge 0$$

that satisfying the following properties:

Sqⁱ are consists of group homomorphisms,

$$2 Sq^0 = id,$$

$$I \quad Sq^n u = u \smile u \text{ if } \dim u = n,$$

•
$$Sq^iu = 0$$
 if $i > \dim u$,

•
$$Sq^i(u \smile v) = \sum_{i=0}^j Sq^iu \smile Sq^{j-i}v$$
 (Cartan's formula).
There exists cohomology operations that satisfying all the properties of Steenrod squares and they are unique.

Sketch proof:

- $H^n(X;G) = [X, K(G, n)]$, where G is an abelian group and K(G, n) is the Eilenberg-Maclane space.
- (2) By Yoneda lemma, there is an one-one correspondence between $\mathcal{O}(n,G;m,\pi)$ and $H^m(K(\pi,n);G)$.
- So For any abelian group G and suitable integer n, there is a fibration where the total space is contractible, the based space is K(G, n) and the fiber is K(G, n 1).
- Use Leray-Serre spectral sequence and transgressions to prove the theorem.

There exists cohomology operations that satisfying all the properties of Steenrod squares and they are unique.

Sketch proof:

- $H^n(X;G) = [X, K(G, n)]$, where G is an abelian group and K(G, n) is the Eilenberg-Maclane space.
- (2) By Yoneda lemma, there is an one-one correspondence between $\mathcal{O}(n,G;m,\pi)$ and $H^m(K(\pi,n);G)$.
- So For any abelian group G and suitable integer n, there is a fibration where the total space is contractible, the based space is K(G, n) and the fiber is K(G, n 1).
- Use Leray-Serre spectral sequence and transgressions to prove the theorem.

There exists cohomology operations that satisfying all the properties of Steenrod squares and they are unique.

Sketch proof:

- $H^n(X;G) = [X, K(G, n)]$, where G is an abelian group and K(G, n) is the Eilenberg-Maclane space.
- (2) By Yoneda lemma, there is an one-one correspondence between $\mathcal{O}(n,G;m,\pi)$ and $H^m(K(\pi,n);G)$.
- So For any abelian group G and suitable integer n, there is a fibration where the total space is contractible, the based space is K(G, n) and the fiber is K(G, n 1).
- Use Leray-Serre spectral sequence and transgressions to prove the theorem.

/□ ▶ ◀ ⋽ ▶ ◀

There exists cohomology operations that satisfying all the properties of Steenrod squares and they are unique.

Sketch proof:

- $H^n(X;G) = [X, K(G, n)]$, where G is an abelian group and K(G, n) is the Eilenberg-Maclane space.
- $\textcircled{0} \quad \text{By Yoneda lemma, there is an one-one correspondence} \\ \text{between } \mathcal{O}(n,G;m,\pi) \text{ and } H^m(K(\pi,n);G). \end{aligned}$
- Solution of the second seco
- Use Leray-Serre spectral sequence and transgressions to prove the theorem.

同 ト 4 ヨ ト 4 ヨ

There exists cohomology operations that satisfying all the properties of Steenrod squares and they are unique.

Sketch proof:

- $H^n(X;G) = [X, K(G, n)]$, where G is an abelian group and K(G, n) is the Eilenberg-Maclane space.
- **②** By Yoneda lemma, there is an one-one correspondence between $\mathcal{O}(n,G;m,\pi)$ and $H^m(K(\pi,n);G)$.
- So For any abelian group G and suitable integer n, there is a fibration where the total space is contractible, the based space is K(G, n) and the fiber is K(G, n − 1).
- Use Leray-Serre spectral sequence and transgressions to prove the theorem.

一日

There exists cohomology operations that satisfying all the properties of Steenrod squares and they are unique.

Sketch proof:

- $H^n(X;G) = [X, K(G, n)]$, where G is an abelian group and K(G, n) is the Eilenberg-Maclane space.
- $\textcircled{0} \quad \text{By Yoneda lemma, there is an one-one correspondence} \\ \text{between } \mathcal{O}(n,G;m,\pi) \text{ and } H^m(K(\pi,n);G). \end{aligned}$
- So For any abelian group G and suitable integer n, there is a fibration where the total space is contractible, the based space is K(G, n) and the fiber is K(G, n − 1).
- Use Leray-Serre spectral sequence and transgressions to prove the theorem.

同 ト 4 ヨ ト 4 ヨ

Suppose there is a homotopy equivalence $f\colon S^3\vee S^5\to\Sigma\mathbb{CP}^2,$ then we consider the Steenrod square

$$Sq^2 \colon H^3(\Sigma \mathbb{CP}^2; \mathbb{Z}) \longrightarrow H^5(\Sigma \mathbb{CP}^2; \mathbb{Z})$$

Let u be a generator of $H^2(\mathbb{CP}^2;\mathbb{Z})$, then by the suspension isomorphism, $\Sigma^* u$ is a generator of $H^3(\Sigma\mathbb{CP}^2;\mathbb{Z})$. According to the definition, $Sq^2\Sigma^* u = \Sigma^*Sq^2u = \Sigma^*(u^2) \neq 0$, a generator of $H^5(\Sigma\mathbb{CP}^2;\mathbb{Z})$.

Suppose there is a homotopy equivalence $f:S^3\vee S^5\to\Sigma\mathbb{CP}^2,$ then we consider the Steenrod square

 $Sq^2: H^3(\Sigma \mathbb{CP}^2; \mathbb{Z}) \longrightarrow H^5(\Sigma \mathbb{CP}^2; \mathbb{Z})$

Let u be a generator of $H^2(\mathbb{CP}^2;\mathbb{Z})$, then by the suspension isomorphism, $\Sigma^* u$ is a generator of $H^3(\Sigma\mathbb{CP}^2;\mathbb{Z})$. According to the definition, $Sq^2\Sigma^* u = \Sigma^*Sq^2u = \Sigma^*(u^2) \neq 0$, a generator of $H^5(\Sigma\mathbb{CP}^2;\mathbb{Z})$.

Suppose there is a homotopy equivalence $f:S^3\vee S^5\to\Sigma\mathbb{CP}^2$, then we consider the Steenrod square

 $Sq^2 \colon H^3(\Sigma \mathbb{CP}^2; \mathbb{Z}) \longrightarrow H^5(\Sigma \mathbb{CP}^2; \mathbb{Z})$

Let u be a generator of $H^2(\mathbb{CP}^2;\mathbb{Z})$, then by the suspension isomorphism, $\Sigma^* u$ is a generator of $H^3(\Sigma\mathbb{CP}^2;\mathbb{Z})$. According to the definition, $Sq^2\Sigma^* u = \Sigma^*Sq^2u = \Sigma^*(u^2) \neq 0$, a generator of $H^5(\Sigma\mathbb{CP}^2;\mathbb{Z})$.

Suppose there is a homotopy equivalence $f:S^3\vee S^5\to\Sigma\mathbb{CP}^2$, then we consider the Steenrod square

$$Sq^2: H^3(\Sigma \mathbb{CP}^2; \mathbb{Z}) \longrightarrow H^5(\Sigma \mathbb{CP}^2; \mathbb{Z})$$

Let u be a generator of $H^2(\mathbb{CP}^2;\mathbb{Z})$, then by the suspension isomorphism, $\Sigma^* u$ is a generator of $H^3(\Sigma\mathbb{CP}^2;\mathbb{Z})$. According to the definition, $Sq^2\Sigma^* u = \Sigma^*Sq^2u = \Sigma^*(u^2) \neq 0$, a generator of $H^5(\Sigma\mathbb{CP}^2;\mathbb{Z})$.

Suppose there is a homotopy equivalence $f:S^3\vee S^5\to\Sigma\mathbb{CP}^2$, then we consider the Steenrod square

$$Sq^2 \colon H^3(\Sigma \mathbb{CP}^2; \mathbb{Z}) \longrightarrow H^5(\Sigma \mathbb{CP}^2; \mathbb{Z})$$

Let u be a generator of $H^2(\mathbb{CP}^2;\mathbb{Z})$, then by the suspension isomorphism, $\Sigma^* u$ is a generator of $H^3(\Sigma\mathbb{CP}^2;\mathbb{Z})$. According to the definition, $Sq^2\Sigma^* u = \Sigma^*Sq^2u = \Sigma^*(u^2) \neq 0$, a generator of $H^5(\Sigma\mathbb{CP}^2;\mathbb{Z})$.

Suppose there is a homotopy equivalence $f:S^3\vee S^5\to\Sigma\mathbb{CP}^2$, then we consider the Steenrod square

$$Sq^2 \colon H^3(\Sigma \mathbb{CP}^2; \mathbb{Z}) \longrightarrow H^5(\Sigma \mathbb{CP}^2; \mathbb{Z})$$

Let u be a generator of $H^2(\mathbb{CP}^2;\mathbb{Z})$, then by the suspension isomorphism, $\Sigma^* u$ is a generator of $H^3(\Sigma\mathbb{CP}^2;\mathbb{Z})$. According to the definition, $Sq^2\Sigma^* u = \Sigma^*Sq^2u = \Sigma^*(u^2) \neq 0$, a generator of $H^5(\Sigma\mathbb{CP}^2;\mathbb{Z})$.

Recall the construction of cup product. Suppose X is a complex, the diagonal map

induces

$$D^*: C^*(X) \otimes C^*(X) \simeq C^*(X \times X) \longrightarrow C^*(X)$$

where the equivalence \simeq is given by Eilenberg-Zilber. To compute cup product, we need to compute

$$D_* \colon C_*(X) \longrightarrow C_*(X) \otimes C_*(X)$$

If D is a simplicial map, then D_{\ast} is clearly. However, D is NOT simplicial for any non-trivial case.

By Alexander-Whitney approximation, there is a simplicial map D_0 such that $D \simeq D_0$ and specifically

$$D_0: [v_0, \dots, v_n] \mapsto \sum_{p=0}^n [v_0, \dots, v_p] \times [v_p, \dots, v_n]$$

If D is a simplicial map, then D_{\ast} is clearly. However, D is NOT simplicial for any non-trivial case.

By Alexander-Whitney approximation, there is a simplicial map D_0 such that $D \simeq D_0$ and specifically

$$D_0: [v_0, \dots, v_n] \mapsto \sum_{p=0}^n [v_0, \dots, v_p] \times [v_p, \dots, v_n]$$

If D is a simplicial map, then D_{\ast} is clearly. However, D is NOT simplicial for any non-trivial case.

By Alexander-Whitney approximation, there is a simplicial map D_0 such that $D \simeq D_0$ and specifically

$$D_0: [v_0, \dots, v_n] \mapsto \sum_{p=0}^n [v_0, \dots, v_p] \times [v_p, \dots, v_n]$$

Let
$$\mathbb{F}_2$$
 act on $X \times X$ by
 $T: X \times X \longrightarrow X \times X$
 $(x,y) \longmapsto (y,x)$

Observation: TD = D while $TD_0 \neq D_0$.

Problem: Lack of symmetry.

Problem: Lack of symmetry.

Problem: Lack of symmetry.

Problem: Lack of symmetry.

- If Although TD_0 and D_0 are not strictly equal, they are homotopic.
- 2 Let D_1 be the chain homotopy from D_0 to TD_0 , where D_1 carries some information of derivation from the symmetry.
- I is not T-invariant, there is still some derivation from symmetry.
- $D_1 + TD_1$ is a chain homotopy from D_0 to itself.
- By acyclic carrier theorem, $D_1 + TD_1$ is homotopic to the constant homotopy of D_0 .
- Let D_2 be the homotopy from $D_1 + TD_1$ to the constant homotopy.
- D₂ is not *T*-invariant, there is still some derivation from symmetry.
- $\bigcirc D_2 TD_2$ is a homotopy from $D_1 + TD_1$ to itself.

- Although TD_0 and D_0 are not strictly equal, they are homotopic.
- 2 Let D_1 be the chain homotopy from D_0 to TD_0 , where D_1 carries some information of derivation from the symmetry.
- I is not T-invariant, there is still some derivation from symmetry.
- $D_1 + TD_1$ is a chain homotopy from D_0 to itself.
- By acyclic carrier theorem, $D_1 + TD_1$ is homotopic to the constant homotopy of D_0 .
- Let D_2 be the homotopy from $D_1 + TD_1$ to the constant homotopy.
- D₂ is not *T*-invariant, there is still some derivation from symmetry.
- $\bigcirc D_2 TD_2$ is a homotopy from $D_1 + TD_1$ to itself.

- Although TD_0 and D_0 are not strictly equal, they are homotopic.
- 2 Let D_1 be the chain homotopy from D_0 to TD_0 , where D_1 carries some information of derivation from the symmetry.
- I is not T-invariant, there is still some derivation from symmetry.
- $D_1 + TD_1$ is a chain homotopy from D_0 to itself.
- By acyclic carrier theorem, $D_1 + TD_1$ is homotopic to the constant homotopy of D_0 .
- Let D_2 be the homotopy from $D_1 + TD_1$ to the constant homotopy.
- D₂ is not *T*-invariant, there is still some derivation from symmetry.
- $\bigcirc D_2 TD_2$ is a homotopy from $D_1 + TD_1$ to itself.

- Although TD_0 and D_0 are not strictly equal, they are homotopic.
- 2 Let D_1 be the chain homotopy from D_0 to TD_0 , where D_1 carries some information of derivation from the symmetry.
- D₁ is not *T*-invariant, there is still some derivation from symmetry.
- $D_1 + TD_1$ is a chain homotopy from D_0 to itself.
- By acyclic carrier theorem, $D_1 + TD_1$ is homotopic to the constant homotopy of D_0 .
- Let D_2 be the homotopy from $D_1 + TD_1$ to the constant homotopy.
- D₂ is not *T*-invariant, there is still some derivation from symmetry.
- $\bigcirc D_2 TD_2$ is a homotopy from $D_1 + TD_1$ to itself.

- Although TD_0 and D_0 are not strictly equal, they are homotopic.
- 2 Let D_1 be the chain homotopy from D_0 to TD_0 , where D_1 carries some information of derivation from the symmetry.
- D₁ is not *T*-invariant, there is still some derivation from symmetry.
- $D_1 + TD_1$ is a chain homotopy from D_0 to itself.
- By acyclic carrier theorem, $D_1 + TD_1$ is homotopic to the constant homotopy of D_0 .
- Let D_2 be the homotopy from $D_1 + TD_1$ to the constant homotopy.
- O D₂ is not T-invariant, there is still some derivation from symmetry.
- $\bigcirc D_2 TD_2$ is a homotopy from $D_1 + TD_1$ to itself.

- Although TD_0 and D_0 are not strictly equal, they are homotopic.
- 2 Let D_1 be the chain homotopy from D_0 to TD_0 , where D_1 carries some information of derivation from the symmetry.
- D₁ is not *T*-invariant, there is still some derivation from symmetry.
- $D_1 + TD_1$ is a chain homotopy from D_0 to itself.
- So By acyclic carrier theorem, $D_1 + TD_1$ is homotopic to the constant homotopy of D_0 .
- Let D_2 be the homotopy from $D_1 + TD_1$ to the constant homotopy.
- O D₂ is not T-invariant, there is still some derivation from symmetry.
- $\bigcirc D_2 TD_2$ is a homotopy from $D_1 + TD_1$ to itself.

- Although TD_0 and D_0 are not strictly equal, they are homotopic.
- 2 Let D_1 be the chain homotopy from D_0 to TD_0 , where D_1 carries some information of derivation from the symmetry.
- D₁ is not *T*-invariant, there is still some derivation from symmetry.
- $D_1 + TD_1$ is a chain homotopy from D_0 to itself.
- So By acyclic carrier theorem, $D_1 + TD_1$ is homotopic to the constant homotopy of D_0 .
- Let D_2 be the homotopy from $D_1 + TD_1$ to the constant homotopy.
- D₂ is not *T*-invariant, there is still some derivation from symmetry.
- 3 $D_2 TD_2$ is a homotopy from $D_1 + TD_1$ to itself.

- Although TD_0 and D_0 are not strictly equal, they are homotopic.
- 2 Let D_1 be the chain homotopy from D_0 to TD_0 , where D_1 carries some information of derivation from the symmetry.
- D₁ is not *T*-invariant, there is still some derivation from symmetry.
- $D_1 + TD_1$ is a chain homotopy from D_0 to itself.
- So By acyclic carrier theorem, $D_1 + TD_1$ is homotopic to the constant homotopy of D_0 .
- Let D_2 be the homotopy from $D_1 + TD_1$ to the constant homotopy.
- D₂ is not T-invariant, there is still some derivation from symmetry.
- $\bigcirc D_2 TD_2$ is a homotopy from $D_1 + TD_1$ to itself.

- Although TD_0 and D_0 are not strictly equal, they are homotopic.
- 2 Let D_1 be the chain homotopy from D_0 to TD_0 , where D_1 carries some information of derivation from the symmetry.
- D₁ is not *T*-invariant, there is still some derivation from symmetry.
- $D_1 + TD_1$ is a chain homotopy from D_0 to itself.
- Sy acyclic carrier theorem, D₁ + TD₁ is homotopic to the constant homotopy of D₀.
- Let D_2 be the homotopy from $D_1 + TD_1$ to the constant homotopy.
- D₂ is not *T*-invariant, there is still some derivation from symmetry.
- **③** $D_2 TD_2$ is a homotopy from $D_1 + TD_1$ to itself.

. . .

- Although TD_0 and D_0 are not strictly equal, they are homotopic.
- 2 Let D_1 be the chain homotopy from D_0 to TD_0 , where D_1 carries some information of derivation from the symmetry.
- D₁ is not *T*-invariant, there is still some derivation from symmetry.
- $D_1 + TD_1$ is a chain homotopy from D_0 to itself.
- Sy acyclic carrier theorem, D₁ + TD₁ is homotopic to the constant homotopy of D₀.
- Let D_2 be the homotopy from $D_1 + TD_1$ to the constant homotopy.
- D₂ is not T-invariant, there is still some derivation from symmetry.
- **③** $D_2 TD_2$ is a homotopy from $D_1 + TD_1$ to itself.

Definition (cup-i product)

For $u \in C^p(X)$ and $v \in C^q(X)$, we define the cup-i product by

 $u \smile_i v \cdot \sigma := u \otimes v \cdot D_i(\sigma)$

for each p + q - i cell σ . In particular, when $i = 0, \sim_0 is$ cup product.

Remark

Cup-i products are the higher version of cup product. If we just consider the cup product, we will loss the higher information.

- **4 同 F 4 三 F 4 三 F**

Definition (cup-i product)

For $u \in C^p(X)$ and $v \in C^q(X)$, we define the cup-i product by

 $u \smile_i v \cdot \sigma := u \otimes v \cdot D_i(\sigma)$

for each p + q - i cell σ . In particular, when $i = 0, \sim_0 is$ cup product.

Remark

Cup-i products are the higher version of cup product. If we just consider the cup product, we will loss the higher information.

- 4 周 ト 4 戸 ト 4 戸 ト

Definition (cup-i product)

For $u \in C^p(X)$ and $v \in C^q(X)$, we define the cup-i product by

 $u \smile_i v \cdot \sigma := u \otimes v \cdot D_i(\sigma)$

for each p + q - i cell σ . In particular, when i = 0, \smile_0 is cup product.

Remark

Cup-i products are the higher version of cup product. If we just consider the cup product, we will loss the higher information.

- 4 周 ト 4 戸 ト 4 戸 ト

Definition (cup-i product)

For $u \in C^p(X)$ and $v \in C^q(X)$, we define the cup-i product by

 $u \smile_i v \cdot \sigma := u \otimes v \cdot D_i(\sigma)$

for each p + q - i cell σ . In particular, when i = 0, \smile_0 is cup product.

Remark

Cup-i products are the higher version of cup product. If we just consider the cup product, we will loss the higher information.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition (Coboundary formula)

With \mathbb{F}_2 coefficients, we have

 $\delta(u\smile_i v)=u\smile_{i-1}v+v\smile_{i-1}u+\delta u\smile_{i-1}v+u\smile_i\delta v$

Corollary

With \mathbb{F}_2 coefficients, if u is a p dimensional cocycle, then $u \smile_j u$ is a 2p - j dimensional cocycle for each j.

Theorem

We define

$$Sq^{i}: H^{p}(X; \mathbb{F}_{2}) \longrightarrow H^{p+i}(X; \mathbb{F}_{2})$$
$$u \longmapsto u \smile_{p-i} u$$

and it is exactly Steenrod square.
Construction of Steenrod squares

Proposition (Coboundary formula)

With \mathbb{F}_2 coefficients, we have

 $\delta(u\smile_i v)=u\smile_{i-1}v+v\smile_{i-1}u+\delta u\smile_{i-1}v+u\smile_i\delta v$

Corollary

With \mathbb{F}_2 coefficients, if u is a p dimensional cocycle, then $u \smile_j u$ is a 2p - j dimensional cocycle for each j.

Theorem

We define

$$Sq^{i}: H^{p}(X; \mathbb{F}_{2}) \longrightarrow H^{p+i}(X; \mathbb{F}_{2})$$
$$u \longmapsto u \smile_{p-i} u$$

and it is exactly Steenrod square.

Construction of Steenrod squares

Proposition (Coboundary formula)

With \mathbb{F}_2 coefficients, we have

$$\delta(u\smile_i v)=u\smile_{i-1}v+v\smile_{i-1}u+\delta u\smile_{i-1}v+u\smile_i\delta v$$

Corollary

With \mathbb{F}_2 coefficients, if u is a p dimensional cocycle, then $u \smile_j u$ is a 2p - j dimensional cocycle for each j.

Theorem

We define

$$\begin{array}{rccc} Sq^i: & H^p(X;\mathbb{F}_2) & \longrightarrow & H^{p+i}(X;\mathbb{F}_2) \\ & u & \longmapsto & u \smile_{p-i} u \end{array}$$

and it is exactly Steenrod square.

Construction of Steenrod squares

Proposition (Coboundary formula)

With \mathbb{F}_2 coefficients, we have

$$\delta(u\smile_i v)=u\smile_{i-1}v+v\smile_{i-1}u+\delta u\smile_{i-1}v+u\smile_i\delta v$$

Corollary

With \mathbb{F}_2 coefficients, if u is a p dimensional cocycle, then $u \smile_j u$ is a 2p - j dimensional cocycle for each j.

Theorem

We define

$$\begin{array}{rccc} Sq^i: & H^p(X;\mathbb{F}_2) & \longrightarrow & H^{p+i}(X;\mathbb{F}_2) \\ & u & \longmapsto & u \smile_{p-i} u \end{array}$$

and it is exactly Steenrod square.

Let $Stab(r; \mathbb{F}_2)$ be the collection of stable cohomology operations of type $(n, \mathbb{F}_2; n + r, \mathbb{F}_2)$. Then we define a graded \mathbb{F}_2 algebra by

$$\mathbb{A}_2 := \bigoplus_{r \ge 0} \mathcal{S}tab(r, \mathbb{F}_2)$$

where the multiplication is given by composition.

Theorem

 \mathbb{A}_2 is generated by Steenrod squares $\{Sq^i\}_{i\geq 0}$.

Cohomology groups \rightsquigarrow Cohomology ring \rightsquigarrow Graded \mathbb{A}_2 -module

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $Stab(r; \mathbb{F}_2)$ be the collection of stable cohomology operations of type $(n, \mathbb{F}_2; n + r, \mathbb{F}_2)$. Then we define a graded \mathbb{F}_2 algebra by

$$\mathbb{A}_2 := \bigoplus_{r \ge 0} \mathcal{S}tab(r, \mathbb{F}_2)$$

where the multiplication is given by composition.

Theorem

 \mathbb{A}_2 is generated by Steenrod squares $\{Sq^i\}_{i\geq 0}$.

Let $Stab(r; \mathbb{F}_2)$ be the collection of stable cohomology operations of type $(n, \mathbb{F}_2; n + r, \mathbb{F}_2)$. Then we define a graded \mathbb{F}_2 algebra by

$$\mathbb{A}_2 := \bigoplus_{r \ge 0} \mathcal{S}tab(r, \mathbb{F}_2)$$

where the multiplication is given by composition.

Theorem

 \mathbb{A}_2 is generated by Steenrod squares $\{Sq^i\}_{i\geq 0}$.

Let $Stab(r; \mathbb{F}_2)$ be the collection of stable cohomology operations of type $(n, \mathbb{F}_2; n + r, \mathbb{F}_2)$. Then we define a graded \mathbb{F}_2 algebra by

$$\mathbb{A}_2 := \bigoplus_{r \ge 0} \mathcal{S}tab(r, \mathbb{F}_2)$$

where the multiplication is given by composition.

Theorem

 \mathbb{A}_2 is generated by Steenrod squares $\{Sq^i\}_{i\geq 0}$.

Let $Stab(r; \mathbb{F}_2)$ be the collection of stable cohomology operations of type $(n, \mathbb{F}_2; n + r, \mathbb{F}_2)$. Then we define a graded \mathbb{F}_2 algebra by

$$\mathbb{A}_2 := \bigoplus_{r \ge 0} \mathcal{S}tab(r, \mathbb{F}_2)$$

where the multiplication is given by composition.

Theorem

 \mathbb{A}_2 is generated by Steenrod squares $\{Sq^i\}_{i\geq 0}$.

Let $Stab(r; \mathbb{F}_2)$ be the collection of stable cohomology operations of type $(n, \mathbb{F}_2; n + r, \mathbb{F}_2)$. Then we define a graded \mathbb{F}_2 algebra by

$$\mathbb{A}_2 := \bigoplus_{r \ge 0} \mathcal{S}tab(r, \mathbb{F}_2)$$

where the multiplication is given by composition.

Theorem

 \mathbb{A}_2 is generated by Steenrod squares $\{Sq^i\}_{i\geq 0}$.

Let $Stab(r; \mathbb{F}_2)$ be the collection of stable cohomology operations of type $(n, \mathbb{F}_2; n + r, \mathbb{F}_2)$. Then we define a graded \mathbb{F}_2 algebra by

$$\mathbb{A}_2 := \bigoplus_{r \ge 0} \mathcal{S}tab(r, \mathbb{F}_2)$$

where the multiplication is given by composition.

Theorem

 \mathbb{A}_2 is generated by Steenrod squares $\{Sq^i\}_{i\geq 0}$.

Let $Stab(r; \mathbb{F}_2)$ be the collection of stable cohomology operations of type $(n, \mathbb{F}_2; n + r, \mathbb{F}_2)$. Then we define a graded \mathbb{F}_2 algebra by

$$\mathbb{A}_2 := \bigoplus_{r \ge 0} \mathcal{S}tab(r, \mathbb{F}_2)$$

where the multiplication is given by composition.

Theorem

 \mathbb{A}_2 is generated by Steenrod squares $\{Sq^i\}_{i\geq 0}$.

Let $Stab(r; \mathbb{F}_2)$ be the collection of stable cohomology operations of type $(n, \mathbb{F}_2; n + r, \mathbb{F}_2)$. Then we define a graded \mathbb{F}_2 algebra by

$$\mathbb{A}_2 := \bigoplus_{r \ge 0} \mathcal{S}tab(r, \mathbb{F}_2)$$

where the multiplication is given by composition.

Theorem

 \mathbb{A}_2 is generated by Steenrod squares $\{Sq^i\}_{i\geq 0}$.

To explain the phenomenon more clearly, we need **operad theory**. For example, there is an E_{∞} -operad C where C(2) encode all D_i . The structure is called E_{∞} algebra.

Theorem (May)

Every E_{∞} algebra has Steenrod operations naturally.

Theorem (Mandell)

The singular cochain complex of a space is an E_{∞} algebra in a canonical way.

Theorem (Mandell)

To explain the phenomenon more clearly, we need **operad theory**. For example, there is an E_{∞} -operad C where C(2) encode all D_i . The structure is called E_{∞} algebra.

Theorem (May)

Every E_{∞} algebra has Steenrod operations naturally.

Theorem (Mandell)

The singular cochain complex of a space is an E_{∞} algebra in a canonical way.

Theorem (Mandell)

To explain the phenomenon more clearly, we need **operad theory**. For example, there is an E_{∞} -operad C where C(2) encode all D_i . The structure is called E_{∞} algebra.

Theorem (May)

Every E_{∞} algebra has Steenrod operations naturally.

Theorem (Mandell)

The singular cochain complex of a space is an E_{∞} algebra in a canonical way.

Theorem (Mandell)

To explain the phenomenon more clearly, we need **operad theory**. For example, there is an E_{∞} -operad C where C(2) encode all D_i . The structure is called E_{∞} algebra.

Theorem (May)

Every E_{∞} algebra has Steenrod operations naturally.

Theorem (Mandell)

The singular cochain complex of a space is an E_{∞} algebra in a canonical way.

Theorem (Mandell)

Thank you.

< ロ > < 回 > < 回 > < 回 >

문 문 문