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abstract
This is a survey on Quillen’s elementary proofs of some results of cobordism theory
using power operations. We optimize the system of notations and clarify some
vague arguments in Quillen’s paper. Furthermore, we emphasize the relations
among cobordism power operations, Landweber-Novikov operations and the for-
mal group law associated to the complex cobordism theory. Particularly, we present
a stable-homotopy-theoric construction of cobordism power operations in order to
demonstrate the relations. Based on this, we give a different proof of Quillen’s tech-
nical lemma by promoting a lemma in Rudyak’s book from mod-2 case to mod-p
cases for all primes p.
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1 introduction
Complex oriented cohomology theories are in the central of homotopy theory. Many
popular cohomology theories, such as integral ordinary cohomology theory, com-
plex K-theory, and complex cobordism theory, are complex oriented. In few words,
a complex oriented cohomology theory is a cohomology theory that assigns each
complex vector bundle a corresponding Thom class (see Definition 2.1), and thus
enable us to consider characteristic classes. Another way to characterize a complex
oriented cohomology theory E is that

E∗(CP∞) = E∗(pt)[[x]]

where x is the Euler class of the universal complex line bundle (see Definition 2.3,
Proposition 2.4). From this perspective, we can deduce that for each complex ori-
ented cohomology theory E, there exists a unique formal group law FE such that

eE(L1 ⊗ L2) = FE(eE(L1), eE(L2))

for line bundles L1 and L2.
Since the spectrumMU of the complex cobordism theory consists of Thom spaces

of universal complex vector bundles, it is natural to regard MU as the universal
complex oriented cobordism theory (see Proposition 2.10). Furthermore, we may
ask whether the formal group law FMU on MU is the universal formal group law
in the sense of [Laz55].

complex oriented cohomology theories

formal group laws

complex cobordism theory

universal formal group law

universal in

universal in

Quillen gave the answer positive answer in [Qui69] by using Adams spectral
sequences. Later, he proved it again without using Adams spectral sequences in
[Qui71], where he mainly use cohomology operations in cobordism theory and
their relations. Quillen called the second proof the elementary proof. This survey
aims to demonstrate some techniques that Quillen used in the elementary proof. In
particular, we would like to emphasize two enlightening points in these techniques.
The first one is that the Thom spectrum MU is interpreted geometrically as cobor-
dism classes, see Section 3. Under this framework, we can see that MU is endowed
with Gysin morphisms (or say Gysin transfers) for complex oriented maps, and we
can construct two types of cobordism operations concretely, i.e. cobordism power
operations and Landweber-Novikov operations (see Construction 6.2 and Construc-
tion 6.1), which are the crucial in Quillen’s elementary proof. The second point
is that the relation between cobordism power operations and Landweber-Novikov
operations is illustrated by a formula in terms of Euler classes of some specified
vector bundles (see Theorem 6.10). To derive this formula, we need to a Riemann-
Roch type theorem (see Theorem 4.4) and apply it to the case of fix point locus (see
Proposition 5.3), which is so called “localization at the fix point set".

Riemann-Roch type theorem

localization at the fix point set

Theorem 6.10

Landweber-Novikov operationscobordism power operations
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The results that rely on the use of the technique are the structure theorems for
the unoriented cobordism ring and the complex cobordism ring. In this paper,
we focus on the structure theorem (see Theorem 8.3) for the complex cobordism
theory asserting that for any compact manifold, the complex cobordism ring U∗(X)
is generated by non-negative elements of U∗(X) over the ring generated by the
coefficients of FMU. The proof of the structure theorem is an inductive argument
on degrees and the key step where we need Theorem 6.10 is how to proceed the
induction. In this process, we still need a technical lemma (see Lemma 7.10 or
[Qui71, Section 4]) to deduce that we just need to apply Theorem 6.10 for a simple
case.

In the proof of the technical lemma, we do not follow Quillen’s paper, which
largely uses Gysin sequences. Instead, we generalize the technique in [Rud98,
Chapter VII, Lemma 7.15] to the case of mod-p lens spaces for any prime p and
use it to prove the technical lemma. In addition, we use a homotopical construction
of cobordism power operations (see Definition 7.3, Construction 7.8) in the proof of
the technical lemma, which is different from the geometric construction in Quillen’s
proof. Nevertheless, these two constructions of cobordism power operations are
equivalent. One advantage of the homotopical construction is that it demonstrates
how power operations related to the coefficients of the formal group law more ex-
plicitly (see Theorem 7.9). Another advantage is that the homotopical construction
of cobordism power operations is a specific case in a general framework called H∞-
structures to utilize power operations, see [BMMS86] for more details. In other
words, the cobordism power operations are derived from an H∞-structure on MU.
From this perspective, we expect that this survey can enlighten people to think
the connection between power operations and formal group laws for an arbitrary
complex oriented cohomology theory with an H∞-structure.

The main references of this survey are [Qui71], [Lan70], [Rud98], and [Car17].

2 complex oriented cohomology theories
Definition 2.1 A complex oriented cohomology theory is a generalized cohomology
theory E which is multiplicative and for any complex vector bundle ξ of rank n,
there exists a class Φξ ∈ Ẽ2n(Th(ξ)) called Thom class such that

1. For any x ∈ X, the image of Φξ of the following composition

E2n(E(ξ),B(ξ)) ∼= Ẽ2n(Th(ξ)) Ẽ2n(Th(ξ|x)) Ẽ2n(S2n) E0(pt)

is the canonical identity element 1.

2. Thom classes is compatible with pullback, namely, f∗Φξ = Φf∗ξ.

3. For any two vector bundles ξ, ι with the same base space, we have Φξ⊕ι =

Φξ ·Φι

Definition 2.2 Let E be a complex oriented cohomology theory and ξ : E → B a
vector bundle bundle. Let s : B → Th(ξ) be the zero section. Then the Euler class of
ξ with respect to E is defined by

eE(ξ) := s
∗Φξ

There is an alternative equivalent definition of complex oriented cohomology
theory as follows.

Definition 2.3 A complex oriented cohomology theory is a ring spectrum E with a
chosen class x ∈ Ẽ2(CP∞) such that the following

Ẽ2(CP∞) → Ẽ2(CP1) = Ẽ2(S2) ∼= E0(pt)
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induced by inclusion CP1 → CP∞, x 7→ 1 in E0(pt). The chosen class is called the
orientation class. We may denote a complex oriented cohomology theory by (E, x).

Proposition 2.4 For any complex oriented cohomology theory E, we have

E∗(CPn) = E∗(pt)[x]/(xn+1)

where x is the Euler class of the tautological bundle ξ on CPn.

Definition 2.5 A (commutative) formal group law over a ring R is a power series
F(x,y) =

∑
cijx

iyj ∈ R[[x,y]] such that

1. F(0, 0) = 0

2. F(x, 0) = x and F(0,y) = y

3. F(x, F(y, z)) = F(F(x,y), z)

4. F(x,y) = F(y, x)

Proposition 2.6 Given a complex oriented cohomology theory (E, t), there exists a
unique formal group law FE(x,y) =

∑
cijx

iyj over the ring E∗(pt) such that for
any space X with any two line bundles L1,L2 on it, we have

eE(L1 ⊗ L2) = FE(eE(L1), eE(L2))

in E∗(X).

Construction 2.7 Let ηn : EU(n) → BU(n) be the universal complex vector bundle
over the complex Grassmanian manifold BU(n). Let n denote the trivial complex
bundle of rank n on an evident space. Let MU(n) be the Thom space of ηn. Then
we have αn : Th(ηn ⊕ 1) ∼= Σ2Th(η) →MU(n+ 1) induced by a classifying map of
ηn ⊕ 1. Then we may define complex Thom spectrum MU by

MU2q :=MU(q)

MU2q+1 := ΣMU(q)

and the structure maps are given by αn. Let Φ ∈MU2(MU(1)) = [MU(1),MU(1)]
be the class of the identity map, which is called the universal Thom class on MU and
derives the Thom class of each vector bundle evidently. Let i : CP∞ → MU(1) be
the zero section, then i∗(Φ) ∈MU2(CP∞) offers the orientation of MU.

Proposition 2.8 There exists a unique formal group law FMU(x,y) =
∑
cijx

iyj

over the ring MU∗ such that for any smooth manifold X with any two line bundles
L1,L2 on it, we have

eMU(L1 ⊗ L2) = F(eMU(L1), eMU(L2))

in MU∗(X), where cij ∈MU2−2i−2j.

Convention 2.9 Let C ⊂MU∗ be the subring of MU∗ generated by the coefficients
{cij}i,j in the formal group law.

Proposition 2.10 (MU∗, i∗Φ) is the universal complex oriented cohomology theory
in the sense that for any complex oriented cohomology theory (E, x), there is a
unique map (up to homotopy) ϕ :MU→ E that preserves the orientations i∗Φ→ x.

Sketch proof. The Thom class of ηn ∈ Ẽ2n(MU(n)) provides us with a morphism
between spectra, which is what we need.

Convention 2.11 Let f(x,y) be the formal group law, then for any non-negative
integer n, we let [n]f(z) := f(z, [n− 1]f(z)) and [0]f(z) = z. In particular, [n]f(z) =
nz+ higher term. Additionally, we denote θn(z) = [n]f(z)/z.
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3 geometric formalism of complex cobordism the-
ory

Let Mlfd be the category of compact smooth manifolds and smooth maps.

Definition 3.1 Suppose X is a compact smooth manifold, then a complex oriented
map to X consists of a smooth proper map f : M → X with even relative dimension
(i.e. dim f = dimM− dimX is even) and a continuous map ν : X → BU such that f
can be factored by

M X× Cn X
i p

where i is a closed embedding, p is the evident projection and the normal bundle
νi on M has a complex structure of rank (2n− dim f)/2 that is classified by ν. An
odd dimensional complex oriented map is a pair (f, 0) : M → X× R, where f is a
complex oriented map of even relative dimension.

Definition 3.2 Let (f,νi) : X→ Y be a complex oriented map with the embedding i :
X→ Y × Cn and let (g,νj) : Y → Z be a complex oriented map with the embedding
j : Y → Z× Cm. Then the composition g ◦ f has an induced complex orientation
with embedding

X
i−→ Y × Cn j×id−−−→ Z× Cm × Cn

whose normal bundle is classified by X id×f−−−→ X× Y
νi×νj−−−−→ BU× BU m−→ BU (here

m is the multiplication on BU) i.e. i∗νj×id.

Remark 3.3 If f : M → X is complex oriented and g : Y → X is a smooth map
which is transversal to f, then the pull-back Y ×XM → Y has an induced complex
orientation.

Example 3.4 Let X be a smooth manifold and let E→ X be a complex vector bundle
on X. The zero section s : X → E has an evident complex orientation, because the
normal bundle of s is exactly E itself.

Definition 3.5 Two proper complex oriented maps fi : Zi → X for i = 0, 1 is said
to be corbordant if there is a proper complex oriented map h : W → X× R such
that the map ji : X → X× R, x 7→ (x, i) is transversal to h and the pull-back of h is
isomorphic with the complex orientation of fi for i = 0, 1.

Remark 3.6 The cobordant relation is indeed an equivalent relation, see[Tho54].

Definition 3.7 For any compact smooth manifold X, we define

Un(X) = {(f,ν) | complex oriented maps of relative dimension n}/cobordant

for each n. The addition structure on Un(X) is defined by

(f,ν) + (f ′,ν ′) := (f⊔ f ′,ν⊔ ν ′)

The external product on U∗ is given by

× : U∗(X)⊗U∗(Y) −→ U∗(X× Y)
f⊗ g 7−→ f× g

and the internal product is derived by

U∗(X)⊗U∗(X)
×−→ U∗(X×X) ∆∗

−−→ U∗(X)

where ∆ : X→ X×X is the diagonal map.
We denote

U∗(X) :=
⊕
n∈Z

Un(X)

which forms a presheaf on Mlfd.
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If A is a strong deformation retract of an open neighborhood V in X, we similarly
define

U∗(X,X−A) = {(f,ν) | complex oriented maps | f(Z) ⊂ A}/cobordant

In this way, the construction of U∗(X) offer a geometric interpretation of MU.
This geometric interpretation enable us to display some delicate operations on
complex cobordism theory more manageable, such as the Gysin homomorphisms,
Landweber-Novikov operations and power operations (the latter two items will be
discussed in Section 6).

Remark 3.8 The presheaf U∗ is actually a presheaf of graded rings. The addition on
Un(X) is defined by disjoint unit and the multiplication on U∗(X) is derived from
the multiplicative property of BU. More specifically, U∗ is a presheaf of U∗(pt)-
algebras.

Proposition 3.9 For any X ∈ Mlfd, we have a functorial isomorphism

U∗(X) ∼=MU∗(X)

given by Pontrjagin-Thom construction. For the relative case, if A is a strong defor-
mation retract of an open neighborhood V in X, then

U∗(X,X−A) ∼=MU∗(X,X−A)

Proof. See [Tho54].

Definition 3.10 Given a proper complex oriented map (g, ξ) : X → Y of dimension
d, we define the induced Gysin homomorphism

g∗ : Uq(X) −→ Uq+d(Y)

f 7−→ g ◦ f

where [g ◦ f] is the cobordant class represented by the complex orientation of g ◦ f
in the sense of Definition 3.2.

Proposition 3.11 The Gysin morphisms are additive and U∗(pt)-linear and given
two composable complex oriented maps p,q, we have (p ◦ q)∗ = p∗ ◦ q∗.

Proposition 3.12 Let i : Z → X be a closed embedding of smooth manifolds of
codimension d such that the normal bundle νi has a complex structure, then we
have the Gysin-Thom isomorphism

i∗ : U
∗(Z)

∼−→ U∗+d(X,X−Z)

Proposition 3.13 Given a cartesian square of manifolds

Y ×X Z Z

Y X

g ′

f ′ f

g

where g is transversal to f and f is a complex oriented proper map and f ′ is endowed
with the pull-back of the complex orientation of f, we have

g∗ ◦ f∗ = f
′
∗ ◦ g

′∗ : U∗(Z) → U∗(Y)

Remark 3.14 In summary, we conclude that U∗ is a contravariant functor for all
morphisms in Mlfd and is a covariant functor for all proper complex oriented maps.
This structure can be roughly viewed as a bivariant structure.
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Proposition 3.15 Let f : Z→ X be a complex oriented map, and let x ∈ U∗(X), then

f∗f
∗(x) = f∗(1) · x

Proposition 3.16 Let E → X be a complex vector bundle and let s : X → Th(E)
be its zero section to the Thom space. Then s∗([idX]) ∈ U∗(Th(E)) is the Thom
class and s∗s∗([idX]) is the Euler class eU(E), which coincides with eMU(E) via the
identification. Moreover, under the identification between U∗(X) and MU∗(X), s∗
is exactly the Thom isomorphism.

Proposition 3.17 Let E→ X and F→ Y be two smooth complex vector bundles, and
let pX : X× Y → X, pY : X× Y → Y be the natural projections. Then we have

p∗XeU(E) · p∗YeU(F) = eU(E) · eU(F)

where the left hand side is the internal product and the right hand side is the
external product.

Sketch proof. We just need to check the zero section p∗XE⊕p
∗
YF→ X× Y and the zero

section is indeed the product of the zero section of E→ X and F→ Y.

4 clean intersection and a riemann-roch type
theorem

Definition 4.1 Suppose X is a smooth manifold, and Y, Z are closed submanifolds
of X with submanifold W = Y ∩Z, then we have the pullback diagram

W Z

Y X

i ′

j ′

i

j

(1)

the excess bundle F on W is the cokernel of TZ|W ⊕ TY|W → TX|W . If TW = TZ|W ∩
TY|W , then the intersection of Y and Z is said to be a clean intersection.

Remark 4.2 If the excess bundle F is trivial, then Y, Z intersect transversally. From
this perspective, the excess bundle is the obstruction to the transversality of the
intersection.

Lemma 4.3 Suppose the intersection in Diagram 1 is clean, we have the following
short exact sequence.

0 νi ′ j ′∗νi F 0 (2)

Theorem 4.4 With the same notation and assumption of Lemma 4.3, we assume
that νi and νi ′ admit complex structures and the map νi ′ → j ′∗νi is a morphism
of complex vector bundles. Then for any z ∈ U∗(Z),

j∗i∗(z) = i
′∗(e(F) · j ′∗(z))

in U∗+d(Y, Y −W) ∼= U∗(W), where d is the codimension of W in Y.

5 equivariant cobordism theory
Suppose G is a compact Lie group in this section.
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Definition 5.1 (Equivariant G-bundle) A G-manifold is a smooth manifold M with a
smooth action of G. An equivariant G-bundle is a bundle π : E → B where both total
space E and base space B are G space and the fibration π is a G-continuous.

Example 5.2 For a trivialG-space X and aG-representation V , the natural projection
X× V → X forms a G-bundle on X.

Proposition 5.3 Suppose i : Z → X is an embedding of G-manifolds, then the fol-
lowing diagram is a clean intersection

ZG Z

XG X

iG

rZ

i

rX

where rX : XG → X is the inclusion of the locus of fixed points, so is rZ.

Since ZG is a trivial G-manifold, then the G-bundle r∗Z(νi) on it can be decom-
posed as r∗Z(νi) = νiG ⊕ µi where µi is a subbundle with nontrivial G-action,
namely it is formed by non-trivial representations of G. Note that νiG is the fixed
point space of r∗Z(νi). Therefore, µi is the excess bundle of the clean intersection in
Proposition 5.3.

Corollary 5.4 Using the notation in Proposition 5.3, we have

r∗Xi∗(z) = i
G
∗ (eMU(µi) · r∗Z(z)) ∈ U

∗(ZG)

for any z ∈ U∗(Z).

Definition 5.5 (Equivariant complex oriented map) Suppose Z, X are twoG-manifolds,

an equivariant complex oriented map is a complex oriented map f : Z i−→ X× Cn p−→ X

where X×Cn is a G-equivariant complex bundle over X and νi has a G-equivariant
complex structure.

Proposition 5.6 Given a G-equivariant complex oriented map f : Z i−→ X× Cn p−→ X

and let r∗Z(νi) = νiG ⊕ µi as we mention before. Let τi be the excess bundle of the
following diagram of intersection

XG X

(X× Cn)G X× Cn

sG

rX

s

rX×Cn

where s : X→ X× Cn is the zero section. Then we have

eMU(τi) · r∗Xf∗(z) = f
G
∗ (eMU(µi) · r∗Z(z)) (3)

for any z ∈ U∗(Z).

Sketch proof. Apply Corollary 5.4 on the diagrams

XG X

(X× Cn)G X× Cn

sG

rX

s

rX×Cn

ZG Z

(X× Cn)G X× Cn

iG

rZ

i

rX×Cn
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and combine these two resulting formulas by using Proposition 3.12 to identify
items.

Remark 5.7 An alternative equivalent description of τi is the sum of the eigen
bundles of r∗X(X× Cn) corresponding to the nontrivial irreducible representations
of G. This description is used in [Qui71].

Construction 5.8 (Equivariant cobordism theorem) Given a principal G-bundle ξ,
say πξ : Q→ B over a manifold B and we let G act right on Q. Then for any G-space,
we define the equivariant cobordism theory U∗

ξ twisted by ξ by

U∗
ξ(X) := U

∗(Q×G X)

If ξ is the universal principal G-bundle, we denote it by U∗
G.

Remark 5.9 For a G-space X and a G-equivariant vector bundle η : E → X over X,
we have

eξ(η) := eMU(Q×G η : Q×G E→ Q×G X)

We also have
eξ(L1 ⊗ L2) = FMU(eξ(L1), eξ(L2))

because Q×G (L1 ⊗ L2) ∼= (Q×G (L1))⊗ (Q×G (L2)).

Remark 5.10 If we replace U∗ by U∗
ξ for any smooth principle G-bundle ξ and

replace eMU by eξ, Proposition 5.3 and Proposition 5.6 also hold, because the con-
struction Q×G − is functorial and preserves clean intersection. Furthermore, for
any G-equivariant complex oriented map f : M → X, Q×G f is a complex oriented
map.

6 operations in geometric cobordism theory
In this section, we will discuss two kinds of operations in U∗ and how they are re-
lated to each other, which plays an important role in the proof of the main theorem.

Construction 6.1 (Landweber-Novikov Operations) The total Landweber-Steenrod op-
erations on X is defined to be

st : U∗(X) −→ U∗(X)[t1, t2, t3, . . . ]
(f,ν) 7−→

∑
α t

αf∗(cα(ν))

where α runs over all the numerable sequences of non-negative integers with only
finitely many integers are non-zero and cα is the Conner-Floyd-Chern class indexed
by α. We denote sα(x) := f∗(cα(ν).

Construction 6.2 (Power operations in cobordism) Given a principle Z/p-bundle
ξ : Q→ B, the total Steenrod operation twisted by ξ is defined to be

Pξ : U
−2q(X) U

−2pq
ξ (Xp) U

−2pq
ξ (X) = U−2pq(B×X)

⟨Z f−→ X⟩ ⟨Q×Z/p Z
p

idQ×Z/pf
p

−−−−−−−→ Q×Z/p X
p⟩ ⟨(Q×Z/p Z

p)Z/p → B×X⟩

∆∗

(4)
where Z/p acts on Xp by permuting factors and acts on X trivially; ∆ : X → Xp is
the diagonal map.

Proposition 6.3 Let (ρ,V) be a representation of Z/p where

V = {(z1, . . . , zp) ∈ Cp |

p∑
i=1

zi = 0}
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by permuting factors cyclically, then X× V → X is a Zp-equivariant trivial vector
bundle over a trivial Z/p-space and we denote this vector bundle by Xρ. Then we
have

eξ(X
ρ)nPξ(f,ν) = f∗(eξ(Mρ ⊗ νi)) ∈ U∗

ξ(X) = U
∗(B×X) (5)

where (f,ν) :M i−→ X× Cn p−→ X is a complex oriented map in U∗(X).

Sketch proof. Note that the diagonal map ∆ : X → Xp is the inclusion of the locus
of the Z/p-fixed points. Thus we apply Proposition 5.6 to the Z/p-equivariant
complex oriented map fp : Mp → Xp and let the variable z in Proposition 5.6 be
[idM]. According to Remark 5.7, (Xρ)⊕n → X is indeed the excess bundle in

X Xp

X× Cn Xp × Cnp

s

∆X

sp

∆X×Cn

and eξ((Xρ)⊕n) = eξ(X
ρ)n. Then we prove the proposition by decoding definitions

and constructions.

Remark 6.4 Note that eξ(Xρ) = eMU(Q×Z/p (X×V) → B×X), since X is a trivial
Z/p-space. Furthermore, there is an evident identification

Q×Z/p (X× V) ∼= (Q×Z/p V)×X→ B×X

Then by Proposition 3.17, we have

eξ(X
ρ) = eMU(Q×Z/pV → B)×eMU(X

id−→ X) = eMU(Q×Z/pV → B)×1 ∼= eMU(Q×Z/pV)

With this identification, we let w = eMU(Q ×Z/p V → B), and we may rewrite
Formula 5 into

wnPξ(f) = f∗(eξ(ρ⊗ νi)) ∈ U∗
ξ(X) = U

∗(B×X) (6)

(Notice that we ignore the symbol of both external products and internal products.)

Remark 6.5 Proposition 6.3 offers a way to compute power operations in terms
of Gysin homomorphisms and characteristic classes. Recall the construction of
Landweber-Novikov operations (Construction 6.1), we may foresee that this propo-
sition will help us demonstrate the connection between power operations and Landweber-
Novikov operations.

Lemma 6.6 Let σ be a 1-dimensional representation of Z/p sending

[n] 7→ exp(2nπi/p) ∈ C∗

then there is an isomorphism between representations

p−1⊕
k=1

σ⊗k ∼= ρ

where we define ρ in Proposition 5.3.

Corollary 6.7 Fix a principal Z/p-bundle ξ : Q → B and a smooth manifold X. Let
v = eξ(σ) ∈ and w = eξ(ρ), we have

w =

p−1∏
k=1

[k]FMU
(v) = (p− 1)!vp−1 +

∑
j⩾p

djv
j (7)

where dj ∈ C for all j.
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Lemma 6.8 Fix a principal Z/p-bundle ξ : Q → B. Let v = eMU(Q×Z/p σ → B)

and w = eMU(Q×Z/p ρ→ B), then there exists a sequence of power series aj(t) ∈
C[[t]] such that for any smooth manifold X and any line bundle L on X, we have

eξ(X
ρ ⊗ L) = w+

∑
j⩾1

aj(v)eMU(L)j

Sketch proof. Note that the eξ(Xρ⊗ L) = eMU(Q×Z/p (V ⊗ L) → B× X). Let pB :

B×X→ B and pX : B×X→ X, then by checking fiber by fiber, we have

Q×Z/p (V ⊗ L) ∼= p∗B(Q×Z/p V)⊗ p∗XL over B×X

According to Lemma 6.6 and the definition of the formal group law FMU, we
have

eξ(X
ρ ⊗ L) =eMU(p∗B(Q×Z/p V)⊗ p∗XL)

=

p−1∏
k=1

eMU(p∗B(Q×Z/p σ)
⊗k ⊗ p∗XL)

=

p−1∏
k=1

FMU(eMU(p∗B(Q×Z/p σ)
⊗k), eMU(p∗XL))

=

p−1∏
k=1

FMU

(
p∗B[k]FMU

(v),p∗XeMU(L)
)

Using Proposition 3.17 =

p−1∏
k=1

(
[k]FMU

(v) +
∑
j⩾1

bjk(v)eMU(L)j
)

=

p−1∏
k=1

([k]FMU
(v)) +

∑
j⩾1

aj(v)eMU(L)j

=w+
∑
j⩾1

aj(v)eMU(L)j

where aj(x),bjk(x) ∈ C[[x]] by the definition. Note that aj and bjk are independent
of the choice of L and only determined by the formal group law.

Proposition 6.9 Fix a principal Z/p-bundle ξ : Q → B. Let E → X be a vector
bundle on X, then we have

eξ(X
ρ ⊗ E) =

∑
l(α)⩽r

wr−l(α)(
∏
j⩾1

aj(v)
αj)cα(E)

Sketch proof. If E = L1 ⊕ · · · ⊕ Lr is a sum of line bundles and let, then

eξ(X
ρ ⊗ E) =

r∏
i=1

eξ(X
ρ ⊗ Li)

Using Lemma 6.8 =

r∏
i=1

(w+
∑
j⩾1

aj(v)eMU(Li)
j)

=
∑

l(α)⩽r

wr−l(α)(
∏
j⩾1

aj(v)
αj)cα(E)

(8)

where α = (α1,α2,α3, . . . ) a numerable sequence of natural numbers and l(α) =∑
j⩾1 αj. Then Formula 8 holds for any vector bundle E by the splitting principle.
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Theorem 6.10 Given an positive integer q, there exists an integer n such that the
p-th power operation associated to a principle Z/p-bundle ξ : Q → B is related to
the Landweber-Novikov operations by the formula

wn+qPξx =
∑

l(α)⩽n

wn−l(α)(
∏
j⩾1

aj(v)
αj)sα(x)

Sketch proof. Assuming the normal bundle is a direct sum of line bundles, we just
merge Proposition 6.3 and Equation 8 together, we will get

wnPξx =
∑

l(α)⩽n

wn−l(α)(
∏
j⩾1

aj(v)
αj)sα(x)

for x = [f,ν] and f factor through i : M → X× Cn. In general case, we may use
splitting principle. Since X is of finite dimensional, we may let n large enough, such
as n− q > dimX, then sα(x) = 0 for l(α) > n− q. Then we have

wn−q+qPξx =
∑

l(α)⩽n−q

wn−q−l(α)(
∏
j⩾1

aj(v)
αj)sα(x)

7 quillen’s technique lemma
The goal of this section is to prove a technical lemma, i.e. Lemma 7.10, which plays
an important role in the proof of the structure theorem for the complex cobordism
theory. Different from Quillen’s proof of the technical lemma, we use power oper-
ations constructed in the homotopical formalism of MU∗, instead of the geometric
formalism U∗. Despite of this, the two constructions are equivalent.

This section mainly refers to [Rud98, Chapter VII, Section 7], and we will extend
the mod-2 constructions and related results in [Rud98, Chapter VII, Section 7] to
mod-p cases for each prime p.

Let p be a prime and Z/p has an action on S2n−1 ⊂ Cn be multiplying exp(2πi/p).
Note that this is a free action. Then we define the nth mod-p lens space Ln(p) :=

S2n−1/p (for convenience, if Y is a Z/n-space, the orbit space is denoted by Y/n).
For a general space X, we let

Γpn(X) := (S2n−1 ×Xp)/p

and for based space (X, ∗), we denote

Γp+n (X) := (S2n−1 ∧X∧p)/p

where Z/p acts diagonally and particularly, Z/p permutes factors in Xp.

Construction 7.1 Let ξ be a complex vector bundle on X and π : S2n−1 ×Xp → Xp

be the natural projection. Then we let ξp is defined to be the vector bundle on Xp

given by external product of ξ. Note that ξp is an equivariant Z/p-vector bundle
by permuting factors cyclically. Since π is a Z/p-equivariant morphism, π∗(ξp) is
also an equivariant Z/p-vector bundle on S2n−1 ×Xp. By taking quotient by p, we
have a vector bundle

π∗(ξp)/p→ Γpn(X)

we denote this vector bundle by ξn(p).

Lemma 7.2 By taking Thom spaces, we have

Th(ξn(p)) ∼= Γp+n (Th(ξ))
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Sketch proof. This is true due to the community of small colimits.

Th(ξn(p)) ∼= Th(S2n−1 × ξp/p) ∼= Th(S2n−1 × ξp)/p ∼= (S2n−1 ∧ Th(ξ)∧p)/p

Similarly, we have this construction for based cases.

Definition 7.3 Given integer r,n and prime p, the external power operation

EP2rn,p : M̃U
2r
(X) → M̃U

2pr
(Γp+n (X))

is defined to be: for any α ∈ M̃U
2r
(X) that can be represented by f : Σ2lX →

MU2r+2l, we have
Γf : Γ

p+
n Σ2lX→ Γ

p+
n MU2r+2l

Let γr+l be the universal complex vector bundle on BUr+l and Th(γr+l) =MU2r+2l.
Note that the Thom class of γr+l(p) denoted byΦγr+l(p) is inMU2p(r+l)(Γ

p+
n MU2r+2l),

then we define

EP2rn,p(α) := Γf
∗(Φγr+l(p)) ∈ M̃U

2p(r+l)
(Γ

p+
n Σ2lX) ∼= M̃U

2pr
(Γ

p+
n X)

Remark 7.4 If we consider the geometric model of the cobordism theory via Pontrjagin-
Thom construction (see Construction 3.7), for smooth manifold X, α ∈MU2r(X) can
be presented by a complex oriented map (X, f) and then EP2rn,p(α) = (Γ

p
nX, Γp

nf) (see
Construction 6.2).

Proposition 7.5 The external power operations have the following properties:

1. They are natural with respect to X;

2. Let in : S2n−1 → S2n+1 be the inclusion induced by the natural inclusion
Cn → Cn+1, then i∗EP2rn+1,p(α) = EP

2r
n,p(α);

3. Let j : Xp → Γ
p+
n X be a map induced by the evident based map Xp → S2n−1 ∧

Xp, then j∗EP2rn,p(α) = α
p;

4. Let ∇ : Γ
p+
n X∧ Y → Γ

p+
n X∧ Γ

p+
n Y defined by

(s, x1,y1, . . . , xp,yp) 7→ (s, x1, . . . , xr, s,y1, . . . ,yp)

then ∇∗ and the external power operations are compatible with the multipli-
cation of M̃U;

5. EP2rn,p(Φγr) = Φγr(p), where γr is the universal complex vector bundle on
BU(r).

Sketch proof. We just decode the definitions.

Definition 7.6 Given a positive integer n and a prime p, let ∆ : X → Xp be the
diagonal map, then we have

∆ : Ln(p)+ ∧X→ Γ
p+
n X

The mod-p total power operation of degree n is defined to be

P2r
n,p : M̃U

2r
(X) −→ M̃U

2pr
(Ln(p)+ ∧X)

α 7−→ ∆∗EP2rn,p(α)

for each r. For convenience, we may simply call it total power operations if the
notations are clear.

Proposition 7.7 The total power operations have the following properties for any

integers r,n, prime p and α ∈ M̃U
2r
(Y);
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1. Let f : X→ Y be a morphism, then f∗P2r
n,p(α) = P2r

n,p(f
∗α);

2. i∗nP2r+2s
n,p (α) = P2r

n,p(α);

3. P2r+2s
n,p (xy) = P2r

n (x)P2s
n (y).

4. Let u : pt→ Ln(p) be an arbitrary map, and let l = u+ ∧ 1 : X→ Ln(p)+ ∧X,
then l∗P2r

n,p(x) = x
p.

Construction 7.8 Note that the lens space L∞(p) is a model of BZ/p. If we let
P2r
p = P2r∞,p and X = Y+ for some space Y, then we have

P2r
p :MU2r(Y) →MU2pr(BZ/p× Y)

which is called mod-p total power operation. Geometrically, we see that {P2r
n,p(α)}n∈N

is a “filtration" of P2r
p (α).

Theorem 7.9 (Landweber) For finite complex X, we have

MU∗(BZ/n×X) ∼=MU∗(X)[[z]]/[n]FMU
(z)

where z is the Euler class of the complex line bundle BZ/n×Z/n C with Z/n acting
on C by multiplying exp(2πi/n). In particular,MU∗(BZ/p) =MU∗(pt)[[z]]/[p]FMU

(z).

Sketch proof. Let ξ1 to be the universal line bundle on CP∞, then Z/n acts on ξ⊗n
1

by permuting factors cyclically. In particular, this action is a free action. Note that
ξ1 is contractible, ξ⊗n

1 is also contractible. Therefore, ξ⊗n
1 is a model of EZ/n and

eMU(ξ⊗n
1 ) = [n]FMU

(eMU(ξ1)). We let t = eMU(ξ1) ∈MU∗(CP∞) and the Gysin-
Thom sequence associated to ξ⊗n

1 derives thatMU∗(BZ/n) =MU∗(pt)[[t]]/BZ/n(t).
For the general case and details, see [Lan70].

Therefore, the Steenrod tom-Dieck operation on X = Y+ is of the form:

P∗
p :MU

∗(Y) →MUp∗(Y)[[z]]/[p]FMU
(z)

With these results at hand, we next prove a highly technical lemma, which plays
an important role in the next section.

Let ζn,p be the complex line bundle S2n−1 ×Z/p C → Ln(p) and let zn =

eMU(ζn,p). The following technical lemma is the goal of this section.

Lemma 7.10 Suppose x ∈ MUq(X× Ln(p)) such that x · zn = 0, then there exists
y ∈ MUq(X) such that y · θp(zn−1) = j∗n(x), where jn : X× Ln−1(p) → X× Ln(p)
is induced by the inclusion in : Ln−1(p) ↪→ Ln(p). (Note that θp is defined in
Convention 2.11.)

Proof. Firstly, we have

Th(ζn−1,p) ∼= (S2n−1 ×D1/S2n−1 × S1)/p ∼= Ln(p)/L1(p) ∼= Ln(p)/S1

Let ϕ :MUi(Ln(p)) →MUi+2(Ln(p)/S1) be the Thom isomorphism. In particular,
ϕ(1) is the Thom class of ζn−1,p.

Let q : Ln(p) → Ln(p)/S1 be the natural quotient map, then we have

q∗ϕ :MUi(Ln−1(p)) → M̃U
i+2

(Ln(p))
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If i = 0, then q∗ϕ(1) is the Euler class of ζn,p on Ln(p), because the following
diagram commutes

M̃U
2
(Ln(p)) M̃U

2
(Ln(p))

M̃U
2
(Th(ζn−1,p)) M̃U

2
(Th(ζn,p))

MU0(Ln−1(p)) MU0(Ln(p))

q∗

ī∗n

s∗

ϕ ϕ

i∗n

where s : Ln(p) → Th(ζn,p) is the zero section. Therefore, we may write q∗ϕ =

s∗ϕ(1) = zn, according to the conventions.
Next, we consider the following diagram

M̃U
1
(S1) M̃U

2
(Ln(p)/S1) M̃U

2
(Ln(p))

H1(S1) H2(Ln(p)/S1) H2(Ln(p))

Z Z Z/p

δ

u u

q∗
MU

u

δH q∗
H

where the rows are exact sequences induced by the pair (Ln(p),S1) and u is the
Steenrod-Thom homomorphism MU → HZ induced the Thom classes in ordinary

cohomology. Let ι ∈ M̃U
1
(S1) ∼= Z be a generator. Note that u(ι) is also a generator

of H1(S1) and we have δ∗H ◦u(ι) = pα for a generator α ∈ H2(Ln(p)/S1). Since that
q∗H is surjective, then q∗H(α) ̸= 0 and we may choose a suitable orientation u such
that q∗H(α) = u(zn) (recall Proposition 2.10).

Recall that H2(X) ∼= [X, CP∞] is the collection of isomorphic classes of complex
line bundles over X. Then we let Qn,p → Ln(p)/S1 be a complex line bundle such
that eH(Qn,p) = α. Since q∗H(α) = u(zn) = eH(ζn,p), we have q∗H(Qn,p) = ζn,p.

Note that ζ⊗p
n,p is trivial, we have eU(ζ⊗p

n,p) = 0 = q
∗
MU(eU(Q⊗p

n,p)), thus

eU(Q⊗p
n,p) = δ(mι)

for some m ∈ Z.
Now we combine these results and we have

pmα = δH ◦ u(mι) = u(eU(Q⊗p
n,p)) = eH(Q⊗p

n,p) = peH(Qn,p) = pα

Therefore m = 1 and δ(ι) = eU(Q⊗p
n,p)) = [p]FMU

(eU(Qn,p)). According to the
Thom isomorphism theorem, there exists xn−1 ∈ MU0(Ln−1(p)) such that δ(ι) =

ϕ(xn−1). Let
i : Ln−1(p) → Ln(p) → Ln(p)/S1

be the zero section.
Note that i∗ϕ(v) = zn−1 · v for any v ∈MU∗(Ln−1(p)) according to the definition

of Thom isomorphism and the Euler class. Hence

zn−1 · xn−1 = i∗ϕ(xn−1) = i
∗eU(Q⊗p

n,p) = eU(i∗Q⊗p
n,p) = eU(ζ⊗p

n−1,p) = 0

Hence zn−1 · xn−1 = 0. In particular, if we let n→ ∞, then we have z∞ · x∞ = 0.
Now we let π : MU∗(X)[[z]] → MU∗(X× L∞(p)) be the quotient map such that

π(z) = z∞ and there exists some x ∈ MU∗(X)[[z]] such that π(x) = x∞. According



the structure of U∗ (X) 16

to Theorem 7.9, we must have z · x = [p]FMU
(z) · (a0 +

∑∞
i>0 aiz

i) in MU∗(X)[[z]].
Therefore

x∞ = [p]FMU
(z)/z(a0 +

∑
i>0

aiz
i∞) = a0θp(z∞)

in MU∗(X× L∞(p)).
Let bn : Ln(p) → L∞(p) be the evident inclusion, then consider the following

diagram

M̃U
1
(S1) M̃U

2
(L∞(p)/S1) M̃U

0
(L∞(p))

M̃U
1
(S1) M̃U

2
(Ln(p)/S1) M̃U

0
(Ln−1(p))

δ

b̄∗
n b∗

n−1

ϕ

δ

ϕ

Since b∗n−1(x∞) = xn−1, we have xn−1 = aθp(zn−1) for each n and some a ∈

M̃U
1
(X+ ∧ S1) ∼=MU∗(X). Therefore, ϕ−1 ◦ δ(ι) = aθp(zn−1).

Then we consider the commutative diagram of MU∗(X)-modules.

M̃U
q
(X+) M̃U

q+1
(X+ ∧ S1)

M̃U
q
(X+ ∧ Ln−1(p)+) M̃U

q+2
(X+ ∧ Ln(p),X+ ∧ S1)

M̃U
q
(X+ ∧ Ln(p)+) M̃U

q+2
(X+ ∧ Ln(p))

Σ≃

δ̄ δ

ϕ≃

rj∗n

·zn

where the right column is the exact sequence induced by the pair (X+∧Ln(p),X+∧

S1) and δ̄ = ϕ−1Σδ. For x ∈ MUq(X× Ln(p)) = M̃U
q
(X+ ∧ Ln(p)+) such that

x · zn = 0, we have r ◦ϕ ◦ j∗n(x) = 0, then ϕ ◦ j∗n(x) = δ(w) for some w ∈ M̃U
q
(S1).

Thus
j∗n(x) = δ̄Σ

−1(w) =ϕ−1δΣΣ−1(w)

=Σ−1(w) ·ϕ−1δΣ(1)

=Σ−1(w) ·ϕ−1δ(ι)

=Σ−1(w)a · θp(zn−1)

If we let y = Σ−1(w) · a, then we prove the lemma.

8 the structure of U∗(X)

The definition of U∗(X) is for an unbased space X. For a based space (X, x0), the
reduced cobordism theory is defined to be

Ũ∗(X) := ker(i∗ : U∗(X) → U∗(x0))

where i : x0 → X is the inclusion of based point.

Proposition 8.1 There are some facts about the reduced cobordism theory:

1. U2j−1(X) ∼= Ũ∗(S1 ×X/{∗}×X);

2. U2j(X) ∼= Ũ2j+2(S2 ×X/{∗}×X);

3. Ũ2j−1 ∼= Ũ2j(ΣX)

4. U∗(X) ∼= Ũ∗(X)⊕U∗(x0)
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Lemma 8.2 Ũ0(X) is a nilpotent ideal of U0(X).

Sketch proof. Let ∆n : X → X ∧ X ∧ · · · ∧ X be the diagonal map and ∆∗
n is null

homotopic if n > dimX, because X∧X · · ·∧X has no non-trivial cells for dimension
less than n and we can use cellular approximation to make ∆n homotopic to a
constant map. Second, the image of ∆∗

n is Ũ0(X)n.

Theorem 8.3 If X is of the homotopy type of a compact smooth manifold, then

U∗(X) = C ·
∑
q⩾0

Uq(X)

Ũ∗(X) = C ·
∑
q>0

Uq(X)

Sketch proof. We give the outline of the proof here.

1. Reduce the case to even degrees, namely we prove the theorem with the as-
sumption that

Ũ2∗(X) = C ·
⊕
q>0

U2q(X)

2. Now we set
R = C ·

⊕
q>0

U2q(X)

and we need to show U2∗(X) = R.

a) The equation is true for Rj = Uj(X) for j > 0.

b) The inductive hypothesis: suppose R−2j = U−2j(X) for any j < q, where
q is a positive integer.

c) With the inductive hypothesis, we just need to show R
−2q
(p)

= U−2q(X)(p)
for any prime p-localization.

d) (Key Step) Proceed the induction by using Steenrod operations on cobor-
dism theory. The rough idea is to do operations on x ∈ U−2q(X) such
that x can be decomposed to be a sum of elements in R.

We just show the details in the key step. For some x ∈ Ũ−2q(X) and for some
large n, we have

wn+qPξx =
∑

l(α)⩽n

wn−l(α)a(v)αsα(x) = w
nx+

∑
0<l(α)⩽n

wn−l(α)a(v)αsα(x)

(9)
in Uξ for any principal Z/p-bundle ξ, where a(v)α =

∏
aj(v)

αj according to The-
orem 6.10.

Now we let εm be principal Z/p-bundle S2m−1 → Lm(p) = S2m−1/p.
By localization on p and Equation 7, we have

vp−1 = w · θ(v)

where θ is a power series with the coefficients in C(p) such that θ−1(x) = (p− 1)! +∑
j⩾1 djx

j−p+1.
Then we modify Equation 9 into

wn(wqPεmx− x) =
∑

0<l(α)⩽n

wn−l(α)a(v)αsα(x) (10)

(vp−1θ−1(v))n(wqPεmx− x) =
∑

0<l(α)⩽n

wn−l(α)a(v)αsα(x) (11)

(vp−1)n(wqPεmx− x) = ψ(v) (12)
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for any εm, where ψ(x) ∈ R(p)[[x]], since sα(x) ∈ Rp according to the inductive
hypothesis.

Now we let m = n(p− 1) and m > 0, then we have

vm(wqPεmx− x) = ψ(v) ∈ U∗(Lm(p)×X)(p)

We may assume m is the minimal positive integer such that there indeed exists
some formal power series f(t) ∈ R(p)[[t]] such that vm(wqPεmx− x) = f(v).

Let i : X → Lm(p) × X be an inclusion for some point at Lm(p) and i∗v = 0

because i∗σ is a trivial bundle over X. Note that i∗(ψ(v)) = ψ(0) and ψ(0) = 0 by
previous equation. Therefore, t | ψ(t) and we let tψ1(t) = ψ(t):

v(vm−1(wqPεmx− x) −ψ1(v)) = 0

Note that

vm−1(wqPεmx− x) −ψ1(v) ∈ U2(m−1)−2q(Lm(p)×X).

By Lemma 7.10, there exists y ∈ U2(m−1)−2q(X) such that

j∗m(vm−1(wqPεmx− x) −ψ1(v)) = yθp(v) ∈ U∗(Lm−1(p)×X)(p)

In another way,
vm−1(wqPεm−1

x− x) = ψ1(v) + yθp(v)

(Warning: there exists abuse of notations. The definitions of v and w should adjust
to the principal bundle εm−1 automatically.)

By quotient the part on the base point, we may identify y ∈ Ũ2(m−1)−2q(X)(p).
Heremmust be 1, otherwise it against the minimality ofm because y ∈ R2(m−1)−2q

according to the inductive hypothesis.
For m = 1, we then have

wqPε1x− x = ψ1(v) + yθp(v) ∈ U∗(S1/p×X)(p) (13)

Let i : X → S1/p × X be a natural inclusion as we did it before and apply it to
Equation 13, then we have

−x = ψ1(0) + py q > 0 (14)

xp − x = ψ1(0) + py q = 0 (15)

For the case q > 0: Since x is arbitrary, we have

Ũ−2q(X) ⊂ R−2q
(p)

+ pŨ−2q(X)(p)

Then we have
Ũ−2q(X)(p) ⊂ R

−2q
(p)

+ pnŨ−2q(X)(p)

for any n, which means that Ũ−2q(X)(p) ∼= R
−2q
(p)

p-locally. Since Ũ−2q(X) is a

finitely generated abelian group, we have Ũ−2q(X)(p) ⊂ R
−2q
(p)

.

For the case q = 0: Note that xp − x ∈ pŨ0(X) + R0, then let

γ : Ũ0(X)/(pŨ0(X) + R0) −→ Ũ0(X)/(pŨ0(X) + R0)

z 7−→ zp

be an endomorphism. Then x ∈ Ũ0(X) is a fixed point for γ. Since Ũ0(X) is a
nilpotent ideal in U0(X) by Lemma 8.2, we conclude that x ∈ pŨ0(X) + R0. Then
we by using the techniques in the case q > 0, we deduce that Ũ0(X) = R0.
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Corollary 8.4 Let L be the Lazard ring. The induced map L→MU∗ is surjective.

9 quillen’s theorem on the formal group law
Theorem 9.1 The induced map L→MU∗ is bijective.

It remains to show the injective part. The rough idea is to use Landweber-Novikov
operations to build a ring map MU∗ → R for a simpler ring R with simple formal
group law and show the composition L→MU∗ → R is eventually injective.

Let ϕ :MU→ HZ be the canonical map by Proposition 2.10. Note that ϕ(eU(L)) =

eH(L), where eU(L) (resp. eH(L)) is the Euler class of a line bundle L → X in
MU∗(X) (resp .in H(X)). Furthermore, ϕ also preserves Chern classes cα(E) for
vector bundle E. We define

β : U∗(X) U∗(X) [t1, t2, t3, . . . ] H∗(X) [t1, t2, t3, . . . ]
st ϕ

(16)

where st is the Landweber-Novikov operation.

Proposition 9.2 If L is a complex line bundle, then

β(eU(L)) =
∑
j⩾0

tj(eH(L))j+1

Proposition 9.3 The Lazard ring L is a polynomial ring over Z with a generator in
degree q for each q > 0.

Let θ(x) =
∑

j⩾0 tjx
j+1, then we have

βFMU(θ(eH(L1)), θ(eH(L2))) =
∑
i,j

β(cij)θ(eH(L1))θ(eH(L2))

= βF(eU(L1), eU(L2))

= β(eU(L1 ⊗ L2))
= θ(eH(L1 ⊗ L2))
= θ(eH(L1) + eH(L2))

then we have (βFMU)(θ(x), θ(y)) = θ(x+ y). Note that θ(x) = x+ higher terms,
there exists a power series θ−1(x) such that θ ◦ θ−1(x) = x. Then we consider the
following map

L U∗ H∗ [t1, t2, . . . ] ∼= Z [t1, t2, . . . ]

FUniv FMU θ−1∗Ga(x,y)

f β

where Ga(x,y) = x+ y the additive formal group law and θ−1∗ means conjugation
action of invertible power series on formal group law.

To prove the injectivity, we still need the following proposition.

Proposition 9.4 For each formal group law G over a Q-algebra R, there exists a
unique power series logG(x) over G such that G = log∗

GGa = G.

Proposition 9.5 The map β ◦ f is injective.

Sketch proof. Since L is torsion free, we just need to should that Q⊗β ◦ f is injective.
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Consider the natural transformation

HomCring(Z[t1, t2, . . . ],−)
(β◦f)∗−−−−→ HomCring(L,−)

Given a ring R, there is an evident bijection between HomCring(Z[t1, t2, . . . ],R) and
the set of power series in R[[x]] divided by x. Specifically, the bijection is defined to
be

u ∈ HomCring(Z[t1, t2, . . . ],R) 7→ θu(x) :=
∑

u(tj)x
j+1

For Q-algebra R, we have

HomCring(Z[t1, t2, . . . ],R) ∼= HomQ−Alg(Q[t1, t2, . . . ],R)

by tensoring Q. Similarly, we have

HomCring(L,R) ∼= HomQ−Alg(Q ⊗Z L,R)

According to our convention and previous identifications, we have (β ◦ f)∗(θu) =

(θ−1
u )∗Ga(x,y). Then Proposition 9.4 indicates that Q ⊗Z (β ◦ f)∗ is actually an

isomorphism. Therefore, by Yoneda lemma, Q ⊗ (β ◦ f) is an isomorphism.
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