	The cup- <i>i</i> products	The Steenrod operations	

The Steenrod Operations Encode the Data of Homotopy Coherence

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

May 27, 2021

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロト イポト イヨト イヨト

э

Background		The cup- <i>i</i> products	The Steenrod operations	
0000				

Outline

1 Background

- 2 The idea of the thesis
- 3 Homotopy coherent structures
- 4 The cup-*i* products
- 5 The Steenrod operations
- 6 Summary

Tongtong Liang

Contern University of Science and Technology, China (SUSTech)

Definition

Suppose X, Y are two topological spaces, we say X is homeomorphic to Y if there exists two bijective continuous map $f: X \to Y$ and $g: Y \to X$ such that $f \circ g$ and $g \circ f$ are identities.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

Definition

Suppose X, Y are two topological spaces, we say X is homeomorphic to Y if there exists two bijective continuous map $f: X \to Y$ and $g: Y \to X$ such that $f \circ g$ and $g \circ f$ are identities.

Question

Given two spaces, for example, manifolds X, Y, how can we judge whether $X \cong Y$ or not?

Tongtong Liang

Definition

Suppose X, Y are two topological spaces, we say X is homeomorphic to Y if there exists two bijective continuous map $f: X \to Y$ and $g: Y \to X$ such that $f \circ g$ and $g \circ f$ are identities.

Question

Given two spaces, for example, manifolds X, Y, how can we judge whether $X \cong Y$ or not?

It is very hard to answer the question if we just use the definition...

Tongtong Liang

Government of Science and Technology, China (SUSTech)

Definition

Suppose X, Y are two topological spaces, we say X is homeomorphic to Y if there exists two bijective continuous map $f: X \to Y$ and $g: Y \to X$ such that $f \circ g$ and $g \circ f$ are identities.

Question

Given two spaces, for example, manifolds X, Y, how can we judge whether $X \cong Y$ or not?

It is very hard to answer the question if we just use the definition... The method of algebraic topology is to assign **algebraic invariants** to each space. Algebraic invariants can be numbers, groups, rings and more complicated algebraic structures.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

Background			
0000			

The use of algebraic invariants

How algebraic invariants work: Let corresponding algebraic invariants be A(X) and A(Y), if A(X) is not isomorphic to A(Y), X is never homeomorphic to Y.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

(人間) トイヨト イヨト

The use of algebraic invariants

How algebraic invariants work: Let corresponding algebraic invariants be A(X) and A(Y), if A(X) is not isomorphic to A(Y), X is never homeomorphic to Y.

Example (Klein)

2-dimensional closed oriented surfaces can be classified by genus, namely, two closed oriented surfaces are homeomorphic if and only if they have the same genus g.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

However, in general case, a chosen algebraic invariants may not be faithful enough.

Example

We can distinguish \mathbb{CP}^2 and S^4 by homology theory.

Tongtong Liang

G → オ 回 → オ 回 → オ 国 → オ 国 → 国 → 国 → つ へ
 Southern University of Science and Technology, China (SUSTech)

However, in general case, a chosen algebraic invariants may not be faithful enough.

Example

We can distinguish \mathbb{CP}^2 and S^4 by homology theory.

Example

We cannot distinguish \mathbb{CP}^2 and $S^2 \vee S^4$ just by homology,

Tongtong Liang

G → オ 回 → オ 回 → オ 国 → オ 国 → 国 → 図 (
 Southern University of Science and Technology, China (SUSTech)

However, in general case, a chosen algebraic invariants may not be faithful enough.

Example

We can distinguish \mathbb{CP}^2 and S^4 by homology theory.

Example

We cannot distinguish \mathbb{CP}^2 and $S^2 \vee S^4$ just by homology, but we can distinguish them by their cohomology with cup products.

Tongtong Liang

ৰ □ ► ৰ ঐ ► ৰ ৗ ► ৰ ৗ ► ব ৗ ► ব ৗ ► ব ৗ ► তিও Southern University of Science and Technology, China (SUSTech)

However, in general case, a chosen algebraic invariants may not be faithful enough.

Example

We can distinguish \mathbb{CP}^2 and S^4 by homology theory.

Example

We cannot distinguish \mathbb{CP}^2 and $S^2 \vee S^4$ just by homology, but we can distinguish them by their cohomology with cup products.

Example

We cannot distinguish $\Sigma \mathbb{CP}^2$ and $S^3 \vee S^5$ just by cohomology with cup products,

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

However, in general case, a chosen algebraic invariants may not be faithful enough.

Example

We can distinguish \mathbb{CP}^2 and S^4 by homology theory.

Example

We cannot distinguish \mathbb{CP}^2 and $S^2 \vee S^4$ just by homology, but we can distinguish them by their cohomology with cup products.

Example

We cannot distinguish $\Sigma \mathbb{CP}^2$ and $S^3 \vee S^5$ just by cohomology with cup products, but we can distinguish them by Steenrod operations.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

The idea of the thesis		
00		

Outline

1 Background

- 2 The idea of the thesis
- 3 Homotopy coherent structures
- 4 The cup-*i* products
- 5 The Steenrod operations
- 6 Summary

Tongtong Liang

< □ ▷ ব ঐ ▷ ব ≧ ▷ ব ≧ ▷ ব ≧ ▷ Ξ ৩ ৭</p>
Southern University of Science and Technology, China (SUSTech)

The idea of the thesis		
00		

The idea of the thesis

Tongtong Liang

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○</p>
Southern University of Science and Technology, China (SUSTech)

The idea of the thesis		
00		

The idea of the thesis

Tongtong Liang

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○</p>
Southern University of Science and Technology, China (SUSTech)

	Homotopy coherent structures		
	00000		

Outline

1 Background

- 2 The idea of the thesis
- 3 Homotopy coherent structures
- 4 The cup-*i* products
- 5 The Steenrod operations

6 Summary

Tongtong Liang

< □ ▷ ব ঐ ▷ ব ≧ ▷ ব ≧ ▷ ব ≧ ▷ Ξ ৩ ৭</p>
Southern University of Science and Technology, China (SUSTech)

	Homotopy coherent structures	The cup- <i>i</i> products	The Steenrod operations	
	00000			

The notion of homotopy

Definition (Homotopy)

A homotopy between two continuous maps $f, g: X \to Y$ is a continuous map $H: X \times I \to Y$ such that H(x, 0) = f(x) and H(x, 1) = g(x). We denote it $f \simeq g$.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン 人間 とくほとう ほう

э

	Homotopy coherent structures	The cup- <i>i</i> products	The Steenrod operations	
	00000			

The notion of homotopy

Definition (Homotopy)

A homotopy between two continuous maps $f, g: X \to Y$ is a continuous map $H: X \times I \to Y$ such that H(x, 0) = f(x) and H(x, 1) = g(x). We denote it $f \simeq g$.

Definition (Mapping space)

 $\operatorname{Hom}_{\mathcal{S}\operatorname{pace}}(X,Y)$ can be endowed with compact-open topology to be a space, we call it mapping space and denote it by $\operatorname{Maps}(X,Y)$.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロト イポト イヨト イヨト

	Homotopy coherent structures	The cup- <i>i</i> products	The Steenrod operations	
	00000			

The notion of homotopy

Definition (Homotopy)

A homotopy between two continuous maps $f, g: X \to Y$ is a continuous map $H: X \times I \to Y$ such that H(x, 0) = f(x) and H(x, 1) = g(x). We denote it $f \simeq g$.

Definition (Mapping space)

 $\operatorname{Hom}_{\mathcal{S}\operatorname{pace}}(X,Y)$ can be endowed with compact-open topology to be a space, we call it mapping space and denote it by $\operatorname{Maps}(X,Y)$.

Proposition

A homotopy from f to g is a path in Maps(X, Y), vice versa.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

・ロン ・回 と ・ ヨ と ・

	Homotopy coherent structures	The cup- <i>i</i> products	The Steenrod operations	
	00000			

A diagram

is commutative, if $j \circ i = k$; is homotopy commutative, if $j \circ i \simeq k$

Question

Given a homotopy commutative diagram \mathcal{D} , can we find a commutative diagram \mathcal{D}' such that $\mathcal{D} \simeq \mathcal{D}'$ to realize it?

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

(人間) トイヨト イヨト

	Homotopy coherent structures	The cup- <i>i</i> products	The Steenrod operations	
	00000			

A diagram

is commutative, if $j \circ i = k$; is homotopy commutative, if $j \circ i \simeq k$

Question

Given a homotopy commutative diagram \mathcal{D} , can we find a commutative diagram \mathcal{D}' such that $\mathcal{D} \simeq \mathcal{D}'$ to realize it?

Theorem (Dwyer-Kan-Smith, 1989)

A homotopy commutative diagram has a realization of and only if it may be lifted to a homotopy coherent diagram.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

	Homotopy coherent structures	The cup- <i>i</i> products	The Steenrod operations	
	00000			

Homotopy coherence = coherent higher homotopies

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

・ 同 ト ・ ヨ ト ・ ヨ ト

	Homotopy coherent structures	The cup- <i>i</i> products	The Steenrod operations	
	00000			

Homotopy coherence = coherent higher homotopies *n*-homotopies \rightsquigarrow *n*-simplex in the mapping spaces

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

Formulation by simplicial categories

Definition (Simplicial category)

A category enriched by simplicial sets is a simplicial category.

Tongtong Liang

くロトイラトイラトイラト ラーラーへの
Southern University of Science and Technology, China (SUSTech)

Formulation by simplicial categories

Definition (Simplicial category)

A category enriched by simplicial sets is a simplicial category.

 $\mathcal{S}\mathrm{pace}$ and \mathcal{CH} are simplicial categories by the following diagram:

Southern University of Science and Technology, China (SUSTech)

イロト イポト イヨト イヨト

э

The Steenrod Operations Encode the Data of Homotopy Coherence

Tongtong Liang

Formulation by simplicial categories

Definition (Simplicial category)

A category enriched by simplicial sets is a simplicial category.

 \mathcal{S} pace and \mathcal{CH} are simplicial categories by the following diagram:

They are $(\infty, 1)$ -categories in the sense of Bergner model structure.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロン イロン イヨン イヨン

3

Background	Homotopy coherent structures	The cup- <i>i</i> products	
		000	

Outline

1 Background

- 2 The idea of the thesis
- 3 Homotopy coherent structures
- 4 The cup-*i* products
- 5 The Steenrod operations

6 Summary

Tongtong Liang

Contern University of Science and Technology, China (SUSTech)

	The cup- <i>i</i> products	The Steenrod operations	
	000		

From cup products to cup-*i* products

$$C_{\bullet}(X) \xrightarrow{D_0} C_{\bullet}(X) \otimes C_{\bullet}(X) \to \tau$$
 (1)

Southern University of Science and Technology, China (SUSTech)

イロン 人間 とくほとう ほう

3

	The cup- <i>i</i> products	The Steenrod operations	
	000		

From cup products to cup-*i* products

$$C_{\bullet}(X) \xrightarrow{D_{0}} C_{\bullet}(X) \otimes C_{\bullet}(X) \longrightarrow \tau$$
(1)

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

Background	Homotopy coherent structures	The cup- <i>i</i> products	
		000	

From cup products to cup-*i* products

 D_0 gives cup products, while ϕ gives cup-*i* products.

In brief, cup-i products are higher derivation of cup products

$$\smile_i: C^p(X) \times C^q(X) \longrightarrow C^{p+q-i}(X)$$

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

イロト イポト イヨト イヨト

э

		The Steenrod operations	
		00	

Outline

1 Background

- 2 The idea of the thesis
- 3 Homotopy coherent structures
- 4 The cup-*i* products
- 5 The Steenrod operations

6 Summary

Tongtong Liang

< □ ▷ ব ঐ ▷ ব ≧ ▷ ব ≧ ▷ ব ≧ ▷ Ξ ৩ ৭</p>
Southern University of Science and Technology, China (SUSTech)

The construction of the Steenrod operations

Definition (The Steenrod squares)

Take \mathbb{F}_2 -coefficients, suppose [u] is an n-dimensional cohomology class of $H^*(X; \mathbb{F}_2)$, the Steenrod square is defined by

$$Sq^{i}([u]) = [u \smile_{n-i} u] \in H^{n+i}(X; \mathbb{F}_{2})$$

Tongtong Liang

ব াচ ব টা ৮ ব টা ৮ ব টা ৮ ব টা ৮ টা তি ৭ Southern University of Science and Technology, China (SUSTech)

The construction of the Steenrod operations

Definition (The Steenrod squares)

Take \mathbb{F}_2 -coefficients, suppose [u] is an n-dimensional cohomology class of $H^*(X; \mathbb{F}_2)$, the Steenrod square is defined by

$$Sq^{i}([u]) = [u \smile_{n-i} u] \in H^{n+i}(X; \mathbb{F}_{2})$$

Remark

The Steenrod squares can be computed by spectral sequences, which are given by the fibrations of Elienberg-Maclane spaces.

Tongtong Liang

ব াচ ব টা ৮ ব টা ৮ ব টা ৮ ব টা ৮ টা তি ৭ Southern University of Science and Technology, China (SUSTech)

		Summary
		00000

Outline

1 Background

- 2 The idea of the thesis
- 3 Homotopy coherent structures
- 4 The cup-*i* products
- 5 The Steenrod operations

Tongtong Liang

Contern University of Science and Technology, China (SUSTech)

Background	Homotopy coherent structures		Summary
			00000

Summary

 $\begin{array}{l} \text{CDGA: commutative differential graded algebra;} \\ \mathcal{S}\text{pace}_\infty: \ (\infty,1)\text{-category of spaces;} \\ \mathcal{CH}_\infty: \ (\infty,1)\text{-category of chain complexes.} \end{array}$

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

		Summary
		000000

Summary

CDGA: commutative differential graded algebra; $Space_{\infty}$: (∞ , 1)-category of spaces; $C\mathcal{H}_{\infty}$: (∞ , 1)-category of chain complexes.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

э

		Summary
		000000

Summary

CDGA: commutative differential graded algebra; $Space_{\infty}$: $(\infty, 1)$ -category of spaces; $C\mathcal{H}_{\infty}$: $(\infty, 1)$ -category of chain complexes.

Tongtong Liang

Southern University of Science and Technology, China (SUSTech)

	The cup- <i>i</i> products	The Steenrod operations	Summary
			000000

Question&Answer

Tongtong Liang

くロトイラトイラトイラト ラーラーへの
Southern University of Science and Technology, China (SUSTech)

	The cup- <i>i</i> products	The Steenrod operations	Summary
			000000

Thank you!

< ロ > < 回 > < 回 > < 回 > < 回 > Southern University of Science and Technology, China (SUSTech)

æ