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Monoid structures

Definition

A monoid structure on a set X consists of a map

M : X × X → X

such that it satisfies associative law and has an identity element.

Proposition

A monoid structure on a set X determines and is determined by a family
of maps

M(k) : X k → X

for k ≥ 0 such that

1 M(1) is the identity map,

2 the set {M(k)}k≥0 is closed under multi-variable compositions.
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Homotopical monoid structures on loop spaces

A monoid structure on a set is “too rigid” in homotopy theory.

Example

Let Z be a based space. The space of based loops on Z is denoted by ΩZ .
For each r ∈ (0, 1), we can define a multiplication

Mr : ΩZ × ΩZ → ΩZ

such that [0, r ] encodes the first loop and [r , 1] encodes the second loop.
Similarly, given n disjoint subintervals of I , we can define a multiplication

(ΩZ )n → ΩZ

Note that any two choices of n disjoint subintervals of I will give
homotopic multiplications.
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Homotopical monoid structures on loop spaces

Let A(k) be the set that consists of sets of k disjoint subintervals of I .
Note that we have an embedding

A(k) → R2k

by listing the 2k endpoints of the given k disjoint subintervals.

Then we may view A(k) as a space and the previous construction
determines

A(k) → Map((ΩZ )k ,ΩZ )

for each k ≥ 0.

In other words, n-ary operations on ΩZ are governed by a space instead of
a single map.
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The embryo of operads

Proposition

If Y = ΩZ for some Z then there is a family of subspaces
M(k) ⊂ Map(Y k ,Y ) such that

1 M(k) contains the identity map,

2 the family M = {M(k)} is closed under multi-variable composition,

3 each M(k) is contractible.

Remark

If we encapsulate this structure outside of a specific object, then a
homotopy coherent associative structure can be described as

1 A collection of spaces {O(k)}k≥0 with suitable coherent conditions,

2 A collections of maps

O(k) → Map(Y k ,Y )
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The notion of non-symmetric operads

Definition

A non-symmetric operad O is a collection of spaces {O(k)}k≥0 together
with an element 1 ∈ O(1) and maps

γ : O(k)×O(j1)× · · ·O(kk) → O(j1 + · · ·+ jk)

for each choice of k, j1, · · · , jk ≥ 0 such that

1 γ(1, s) = s and γ(s, 1, . . . , 1) = s for each k and s ∈ O(k)

2 The collection is coherent under multi-variable compositions.
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The diagram of coherence of multi-variable compositions

O(k)×
∏k

m=1(O(jm)×
∏jm

n=1O(imn)) O(k)×
∏k

m=1O(im1 + · · · imjm)

(O(k)×
∏k

m=1O(jm))×
∏

m,n O(imn)

O(j1 + · · · , jk)×O(i11)× · · · × O(ikjk )) O(i11 + · · ·+ ikjk )

1×γ

=

γ

γ×1

γ

Definition

A morphism between operads O and O′ is a collection of continuous map
fk : O(k) → O′(k) such that they form functors between the above type of
diagrams.
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Examples of non-symmetric operads

Example

The configuration spaces of subintervals of I we described before form
little interval non-symmetric operad denoted by C1.

Example

If Y is any space, then the collection

{Map(Y k ,Y )}

form a non-symmetric operad called the endomorphism operad of Y and
is denoted by EndY .
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The action of operads on spaces

Definition

Let O be a non-symmetric operad and let Y be a space. An action of O
on Y is a morphism between operads

θ : O(k) → EndY

More precisely, by adjunction, it is to assign

θ : O(k)× Y k → Y

for each k ≥ 0 with coherent conditions.

Definition

The action of O on Y is group-like if the monoid π0Y is a group. We say
that Y is an O-space.
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The recognition principle for A∞-spaces

Definition

An A∞ operad is a non-symmetric operad O such that each space O(k) is
weakly equivalent to a point.

Proposition

A loop space is a group-like A∞-space.

Theorem (Recognition principle)

Y is weakly equivalent to ΩZ for some space Z if and only if Y has a
group-like action of an A∞ operad.
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Observations on higher homotopy groups

Given a based space (X , ∗), we have

1 π0(X , ∗) a set;

2 π1(X , ∗) = π0(ΩX , ∗) a group;

3 π2(X , ∗) = π0(Ω
2X , ∗) an abelian group

4 πn(X , ∗) = π0(Ω
nX , ∗) has higher commutativity for n > 2?

X ,ΩX ,Ω2X ,Ω3X , · · · ,ΩnX , · · ·

The level of commutativity increases as n increases intuitively, but
why? How should we describe this phenomenon precisely?
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Observation: Why higher homotopy groups are always
commutative

Given [f ], [g ] ∈ π2(X , ∗), i.e. f , g : S2 → X , the group operation on
π2(X , ∗) is defined by

S2 c−→ S2 ∨ S2 f ∨g−−→ X

It is commutative because the permutation is homotopy to the identity

S2 ∨ S2 τ−→ S2 ∨ S2

It is homotopy to the identity because we have an extra dimension to
move the cubes, while we do not have such a space to move intervals in
the dimension-1 case.
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Symmetric operads

Recall that little intervals operads control ΩZ , what kinds of operads will
control ΩnZ?

Definition

An operad is a (symmetric) operad O together with, for each k, there is a
right action of Σk on O(k) and the coherent diagram is Σ-equivariant.

Definition

Given an operad O and a space Y , the action of operad O on Y is an
equivariant morphism O → EndY . More precisely, the morphism

O(k)× Y k → Y

factors through O(k)×Σk
Y k for each k .
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A∞ and E∞ operads

Definition

We now define two discrete operads:

1 Define M(j) = Σj for j ≥ 1 with Σj -right adjoint action and M(0)
contain the single element e0. The structure maps are given by
multi-wreath products.

2 Define N (j) = {fj} a single point with trivial Σ-action.

Definition

An A∞-operad O is a Σ-free operad such that there exists a local
Σ-equivalence O → M i.e. a morphism of non-symmetric morphism such
that O(k) → Σ(k) is an Σk -equivariant weak homotopy equivalence for
each k .
An E∞ operad is a Σ-free operad such that each O(j) is contractible.
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The little n-cubes operads

Definition

A TD-map f : I n → I n is a composition T ◦ D, where T is a translation
and D is a dilation (i.e. multiplication by scalars). More precisely,
f = f1 × · · · × fj , where fi : I → I is a linear function t 7→ (yi − xi )t + xi for
some 0 ≤ xi < yi < 1.

Definition

Given n ≥ 0, we let Cn(k) be the space consisting of k-tuple (j1, · · · , jk) of
TD-maps with disjoint images, which is a subset of Map(⊔k I

n → I n) and
inherits the compact-one topology. The collection {Cn(k)}k≥0 forms an
operad called the little n-cubes operad, whose Σ-action structure maps
are given evidently.
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The action of little n-cubes operads on loop spaces

Theorem

Given any space X , ΩnX is a Cn-space.

We define θn,j : Cn(j)× (ΩnX )j → ΩX as follows

θn,j(c , y)(v) =

{
yr (u) if cr (u) = v

∗ if v /∈ im c

Remark

If X = ΩX ′, then θn = θn+1 ◦ σn, where σn : Cn → Cn+1 is given by
ci 7→ ci × id and θn+1 is the action on Ωn+1X ′.
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Computations on the little n-cube operads

Definition

Let M be an n-dimensional manifold. The j-th configuration space
F (M; j) of M is defined to be

{(x1, · · · , xj) | xr ∈ M, xr ̸= xs if s ̸= t} ⊂ M j

with subspace topology. Note that F (M; j) is a jn-dimensional manifold
and F (M; j) with Σj -free right action.

Theorem

We have a Σj -equivariant homotopy equivalence between Cn(j) and
F (Rn; j)

A map g : Cn(j) → F (I n; j) is defined by

g(c1, . . . , cj) = (c1(p), · · · , cj(p)), where p = (
1

2
, · · · , 1

2
)
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Computations on the configuration spaces

Theorem

Let M be an n-dimensional manifold n ≥ 2. Let Yr ∈ F (M; r). We define

πr : F (M − Yr ; j − r) −→ M − Yr

(x1, . . . , xj−r ) 7−→ x1

Then πr is a fibration with fiber F (M − Yr+1 − {yr+1}; j − r − 1) over the
point yr+1 and admits a cross-section if r ≥ 1.

Corollary

If n ≥ 3, then πiF (Rn; j) =
∑j−1

r=1 πi (∨rSn−1); πiF (R2; j) = 0 for i ̸= 1
and π1F (R2; j) is constructed from the free groups π1(∨rS1).
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En-operads and the recognition principle for Cn-spaces

Corollary

C1 is an A∞ operad and Cn is a locally (n − 2)-connected Σ-operad.

Definition

An En-operad is an operad that is locally Σ weak equivalent to Cn.

Remark

We can view On as the space of commutivity. Indeed, higher fold loop
spaces will have better commutativity since their spaces of commutativity
are more connected.

Theorem (The recognition principle)

Y is weakly homotopy equivalent to ΩnZ if and only if Y is a group-like
En-space.
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1 Loop spaces and A∞-structures

2 n-fold loop spaces and symmetric operads

3 Applications to algebraic K -theory

4 The monadic interpretation
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Why Quillen’s higher K -theory is a generalized cohomology
theory

Roughly speaking, generalized cohomology theories = spectra via Brown’s
representability. Thus the problem is why Quillen’s K -theory space is
actually a spectrum.

Theorem

The category of infinite loop spaces is equivalent to the category
connective spectra.

Theorem

Suppose E is a symmetric monoidal category. Then the classifying space
of E is an E∞-space.
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Group completions and the plus construction

Given a commutative ring R, Quillen’s higher K -theory for K (R) is built
from the classifying space pf the category of finite projective R-modules.
This space is denoted by BGL(R) and it is an E∞-space.

Note that BGL(R) is an E∞-spaces but it is not group-like!

The group
completion can be given by M → ΩBM.

Quillen’s plus construction BGL(R)+ is a kind of “higher group
completion” on BGL(R). The i-th K -group of R is defined to be
πi (BGL(R)

+) and BGL(R)+ is a group-like E∞-space.
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The notion of monad

Definition

A monad (C , µ, η) in a category D consists of covariant functor
C : D → D together with natural transformations of functors µ : C 2 → C
and η : id → C such that some evident diagrams commute.
A morphism between monad is a natural transformation such that some
evident diagrams commute.

Example

Given a pair of adjunction (F ,G ) : A → B, F ◦ G form a monad on B.

Definition

Given a monad C on D, a C -algebra is an object X ∈ D together with a
structure map ξ : CX → X such that some evident diagrams commute.
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Operad=Operation+Monad

Given an operad C. The associated monad (C , µ, η) is constructed by

CX =
⊔
j≥0

C(j)× X j/(∼)

The relations consist of

1 The compatibility of σi : C(j) → C(j − 1) and si : X
j−1 → X j ;

2 The Σj right action on C(j) and the Σj left action on X j .

Proposition

Given an operad C with associated monad C . Then the notion of a
C-space is equivalent to the notion of a C -algebra.
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The insight of the recognition principle

1 Recall that (Ωn,Σn) is a pair of adjunction on the category of based
spaces. Then ΩnΣn is a monad.

2 Let Cn be the monad associated to the little n cubes operad Cn. Then
there is a map αn : CnX → ΩnΣnX for each n.

3 αn is a weak homotopy equivalence if X is connected.

4 Passing to infinity by taking colimits, we have
α∞ : C∞X → Ω∞Σ∞X .

5 Using techniques in cosimplicial spaces, such as two-side bar
construction, we may have the delooping machinery from αn and α∞.
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