Operads and the Recognition Principles

Tongtong Liang

SUSTech

Dec. 13, 2022

Tongtong Liang (SUSTech)

Operads and the Recognition Principles

Dec. 13, 2022

∃ ≥ >

э

1 Loop spaces and A_{∞} -structures

2 n-fold loop spaces and symmetric operads

3 Applications to algebraic K-theory

4 The monadic interpretation

→ ∃ →

Definition

A monoid structure on a set X consists of a map

$$M: X \times X \to X$$

such that it satisfies associative law and has an identity element.

.∃ →

Definition

A monoid structure on a set X consists of a map

$$M: X \times X \to X$$

such that it satisfies associative law and has an identity element.

Proposition

A monoid structure on a set X determines and is determined by a family of maps

$$M(k): X^k \to X$$

for $k \ge 0$ such that

Definition

A monoid structure on a set X consists of a map

$$M: X \times X \to X$$

such that it satisfies associative law and has an identity element.

Proposition

A monoid structure on a set X determines and is determined by a family of maps

$$M(k): X^k \to X$$

for $k \ge 0$ such that

• M(1) is the identity map,

Definition

A monoid structure on a set X consists of a map

$$M: X \times X \to X$$

such that it satisfies associative law and has an identity element.

Proposition

A monoid structure on a set X determines and is determined by a family of maps

$$M(k): X^k \to X$$

for $k \ge 0$ such that

- M(1) is the identity map,
- 2 the set $\{M(k)\}_{k\geq 0}$ is closed under multi-variable compositions.

Homotopical monoid structures on loop spaces

A monoid structure on a set is "too rigid" in homotopy theory.

Example

Let Z be a based space. The space of based loops on Z is denoted by ΩZ . For each $r \in (0,1)$, we can define a multiplication

 $M_r: \Omega Z \times \Omega Z \to \Omega Z$

such that [0, r] encodes the first loop and [r, 1] encodes the second loop. Similarly, given n disjoint subintervals of I, we can define a multiplication

 $(\Omega Z)^n o \Omega Z$

Note that any two choices of n disjoint subintervals of I will give homotopic multiplications.

Let $\mathcal{A}(k)$ be the set that consists of sets of k disjoint subintervals of I. Note that we have an embedding

$$\mathcal{A}(k)
ightarrow \mathbb{R}^{2k}$$

by listing the 2k endpoints of the given k disjoint subintervals.

Let $\mathcal{A}(k)$ be the set that consists of sets of k disjoint subintervals of I. Note that we have an embedding

$$\mathcal{A}(k)
ightarrow \mathbb{R}^{2k}$$

by listing the 2k endpoints of the given k disjoint subintervals.

Then we may view $\mathcal{A}(k)$ as a space and the previous construction determines

$$\mathcal{A}(k) \to \operatorname{Map}((\Omega Z)^k, \Omega Z)$$

for each $k \ge 0$.

Let $\mathcal{A}(k)$ be the set that consists of sets of k disjoint subintervals of I. Note that we have an embedding

$$\mathcal{A}(k)
ightarrow \mathbb{R}^{2k}$$

by listing the 2k endpoints of the given k disjoint subintervals.

Then we may view $\mathcal{A}(k)$ as a space and the previous construction determines

$$\mathcal{A}(k) \to \operatorname{Map}((\Omega Z)^k, \Omega Z)$$

for each $k \ge 0$.

In other words, *n*-ary operations on ΩZ are governed by a space instead of a single map.

5/28

Proposition

Tongtong Liang (SUSTech)

If $Y = \Omega Z$ for some Z then there is a family of subspaces $\mathcal{M}(k) \subset \operatorname{Map}(Y^k, Y)$ such that

∃ ≥ >

э

Proposition

Tongtong Liang (SUSTech)

If $Y = \Omega Z$ for some Z then there is a family of subspaces $\mathcal{M}(k) \subset \operatorname{Map}(Y^k, Y)$ such that

• $\mathcal{M}(k)$ contains the identity map,

Proposition

If $Y = \Omega Z$ for some Z then there is a family of subspaces $\mathcal{M}(k) \subset \operatorname{Map}(Y^k, Y)$ such that

- $\mathcal{M}(k)$ contains the identity map,
- 2 the family $\mathcal{M} = \{\mathcal{M}(k)\}$ is closed under multi-variable composition,

Proposition

If $Y = \Omega Z$ for some Z then there is a family of subspaces $\mathcal{M}(k) \subset \operatorname{Map}(Y^k, Y)$ such that

- $\mathcal{M}(k)$ contains the identity map,
- **2** the family $\mathcal{M} = \{\mathcal{M}(k)\}$ is closed under multi-variable composition,
- **3** each $\mathcal{M}(k)$ is contractible.

Proposition

If $Y = \Omega Z$ for some Z then there is a family of subspaces $\mathcal{M}(k) \subset \operatorname{Map}(Y^k, Y)$ such that

- $\mathcal{M}(k)$ contains the identity map,
- 2 the family $\mathcal{M} = \{\mathcal{M}(k)\}$ is closed under multi-variable composition,
- **3** each $\mathcal{M}(k)$ is contractible.

Remark

If we encapsulate this structure outside of a specific object, then a homotopy coherent associative structure can be described as

Proposition

If $Y = \Omega Z$ for some Z then there is a family of subspaces $\mathcal{M}(k) \subset \operatorname{Map}(Y^k, Y)$ such that

- $\mathcal{M}(k)$ contains the identity map,
- 2 the family $\mathcal{M} = \{\mathcal{M}(k)\}$ is closed under multi-variable composition,
- **3** each $\mathcal{M}(k)$ is contractible.

Remark

If we encapsulate this structure outside of a specific object, then a homotopy coherent associative structure can be described as

• A collection of spaces $\{\mathcal{O}(k)\}_{k\geq 0}$ with suitable coherent conditions,

Proposition

If $Y = \Omega Z$ for some Z then there is a family of subspaces $\mathcal{M}(k) \subset \operatorname{Map}(Y^k, Y)$ such that

- $\mathcal{M}(k)$ contains the identity map,
- 2 the family $\mathcal{M} = \{\mathcal{M}(k)\}$ is closed under multi-variable composition,
- **3** each $\mathcal{M}(k)$ is contractible.

Remark

If we encapsulate this structure outside of a specific object, then a homotopy coherent associative structure can be described as

- A collection of spaces $\{\mathcal{O}(k)\}_{k\geq 0}$ with suitable coherent conditions,
- A collections of maps

$$\mathcal{O}(k) \to \operatorname{Map}(Y^k, Y)$$

A non-symmetric operad \mathcal{O} is a collection of spaces $\{\mathcal{O}(k)\}_{k\geq 0}$ together with an element $1 \in \mathcal{O}(1)$ and maps

$$\gamma \colon \mathcal{O}(k) \times \mathcal{O}(j_1) \times \cdots \mathcal{O}(k_k) \to \mathcal{O}(j_1 + \cdots + j_k)$$

for each choice of $k, j_1, \cdots, j_k \ge 0$ such that

A non-symmetric operad \mathcal{O} is a collection of spaces $\{\mathcal{O}(k)\}_{k\geq 0}$ together with an element $1 \in \mathcal{O}(1)$ and maps

$$\gamma : \mathcal{O}(k) \times \mathcal{O}(j_1) \times \cdots \mathcal{O}(k_k) \to \mathcal{O}(j_1 + \cdots + j_k)$$

for each choice of $k, j_1, \dots, j_k \ge 0$ such that • $\gamma(1, s) = s$ and $\gamma(s, 1, \dots, 1) = s$ for each k and $s \in \mathcal{O}(k)$

A non-symmetric operad \mathcal{O} is a collection of spaces $\{\mathcal{O}(k)\}_{k\geq 0}$ together with an element $1 \in \mathcal{O}(1)$ and maps

$$\gamma : \mathcal{O}(k) \times \mathcal{O}(j_1) \times \cdots \mathcal{O}(k_k) \to \mathcal{O}(j_1 + \cdots + j_k)$$

for each choice of $k, j_1, \cdots, j_k \ge 0$ such that

- $\gamma(1,s) = s$ and $\gamma(s,1,\ldots,1) = s$ for each k and $s \in \mathcal{O}(k)$
- **2** The collection is coherent under multi-variable compositions.

The diagram of coherence of multi-variable compositions

Definition

(

A morphism between operads \mathcal{O} and \mathcal{O}' is a collection of continuous map $f_k : \mathcal{O}(k) \to \mathcal{O}'(k)$ such that they form functors between the above type of diagrams.

Example

The configuration spaces of subintervals of I we described before form little interval non-symmetric operad denoted by C_1 .

→ ∃ →

Example

The configuration spaces of subintervals of I we described before form little interval non-symmetric operad denoted by C_1 .

Example

If Y is any space, then the collection

```
{Map(Y^k, Y)}
```

form a non-symmetric operad called the **endomorphism operad** of Y and is denoted by $\mathcal{E}nd_Y$.

→

Let \mathcal{O} be a non-symmetric operad and let Y be a space. An action of \mathcal{O} on Y is a morphism between operads

 $\theta \colon \mathcal{O}(k) \to \mathcal{E}\mathrm{nd}_Y$

More precisely, by adjunction, it is to assign

 $\theta \colon \mathcal{O}(k) \times Y^k \to Y$

for each $k \ge 0$ with coherent conditions.

Let \mathcal{O} be a non-symmetric operad and let Y be a space. An action of \mathcal{O} on Y is a morphism between operads

 $\theta \colon \mathcal{O}(k) \to \mathcal{E}\mathrm{nd}_Y$

More precisely, by adjunction, it is to assign

 $\theta \colon \mathcal{O}(k) \times Y^k \to Y$

for each $k \ge 0$ with coherent conditions.

Definition

The action of \mathcal{O} on Y is **group-like** if the monoid $\pi_0 Y$ is a group. We say that Y is an \mathcal{O} -space.

Tongtong Liang (SUSTech)

< 日 > < 同 > < 三 > < 三 >

э

An A_{∞} operad is a non-symmetric operad \mathcal{O} such that each space $\mathcal{O}(k)$ is weakly equivalent to a point.

.∃ →

An A_{∞} operad is a non-symmetric operad O such that each space O(k) is weakly equivalent to a point.

Proposition

A loop space is a group-like A_{∞} -space.

An A_{∞} operad is a non-symmetric operad O such that each space O(k) is weakly equivalent to a point.

Proposition

A loop space is a group-like A_{∞} -space.

Theorem (Recognition principle)

Y is weakly equivalent to ΩZ for some space Z if and only if Y has a group-like action of an A_{∞} operad.

D Loop spaces and A_∞ -structures

2 *n*-fold loop spaces and symmetric operads

- 3 Applications to algebraic K-theory
- 4 The monadic interpretation

→ ∃ →

Observations on higher homotopy groups

Given a based space (X, *), we have

1 $\pi_0(X, *)$ a set;

Tongtong Liang (SUSTech)

A ► <

Observations on higher homotopy groups

Given a based space (X, *), we have

I ∃ ►

Observations on higher homotopy groups

Given a based space (X, *), we have

< 3 >

Given a based space (X, *), we have

I ∃ ►

Given a based space (X, *), we have

$$X, \Omega X, \Omega^2 X, \Omega^3 X, \cdots, \Omega^n X, \cdots$$

The level of commutativity increases as *n* increases intuitively, but why? How should we describe this phenomenon precisely?

13 / 28

Observation: Why higher homotopy groups are always commutative

Given $[f], [g] \in \pi_2(X, *)$, i.e. $f, g: S^2 \to X$, the group operation on $\pi_2(X, *)$ is defined by

 $S^2 \xrightarrow{c} S^2 \vee S^2 \xrightarrow{f \vee g} X$

< />
● ● < 注 ● < 注 ● ● 三 注

Observation: Why higher homotopy groups are always commutative

Given $[f], [g] \in \pi_2(X, *)$, i.e. $f, g: S^2 \to X$, the group operation on $\pi_2(X, *)$ is defined by

$$S^2 \xrightarrow{c} S^2 \vee S^2 \xrightarrow{f \vee g} X$$

It is commutative because the permutation is homotopy to the identity

$$S^2 \vee S^2 \xrightarrow{\tau} S^2 \vee S^2$$
Observation: Why higher homotopy groups are always commutative

Given $[f], [g] \in \pi_2(X, *)$, i.e. $f, g: S^2 \to X$, the group operation on $\pi_2(X, *)$ is defined by

$$S^2 \xrightarrow{c} S^2 \vee S^2 \xrightarrow{f \vee g} X$$

It is commutative because the permutation is homotopy to the identity

$$S^2 \vee S^2 \xrightarrow{\tau} S^2 \vee S^2$$

It is homotopy to the identity because we have an extra dimension to move the cubes, while we do not have such a space to move intervals in the dimension-1 case. Recall that little intervals operads control ΩZ , what kinds of operads will control $\Omega^n Z$?

Definition

An operad is a (symmetric) operad \mathcal{O} together with, for each k, there is a right action of Σ_k on $\mathcal{O}(k)$ and the coherent diagram is Σ -equivariant.

15 / 28

Recall that little intervals operads control ΩZ , what kinds of operads will control $\Omega^n Z$?

Definition

An operad is a (symmetric) operad \mathcal{O} together with, for each k, there is a right action of Σ_k on $\mathcal{O}(k)$ and the coherent diagram is Σ -equivariant.

Definition

Given an operad \mathcal{O} and a space Y, the action of operad \mathcal{O} on Y is an equivariant morphism $\mathcal{O} \to \mathcal{E}nd_Y$. More precisely, the morphism

$$\mathcal{O}(k) \times Y^k \to Y$$

factors through $\mathcal{O}(k) \times_{\Sigma_k} Y^k$ for each k.

A_{∞} and E_{∞} operads

Tongtong Liang (SUSTech)

Definition

We now define two discrete operads:

47 ▶

э

A_∞ and E_∞ operads

Definition

We now define two discrete operads:

Define M(j) = Σ_j for j ≥ 1 with Σ_j-right adjoint action and M(0) contain the single element e₀. The structure maps are given by multi-wreath products.

- ∢ ∃ →

A_∞ and E_∞ operads

Definition

We now define two discrete operads:

- Define M(j) = Σ_j for j ≥ 1 with Σ_j-right adjoint action and M(0) contain the single element e₀. The structure maps are given by multi-wreath products.
- **2** Define $\mathcal{N}(j) = \{f_j\}$ a single point with trivial Σ -action.

16 / 28

・ 同 ト ・ ヨ ト ・ ヨ ト …

A_{∞} and E_{∞} operads

Definition

We now define two discrete operads:

- Define M(j) = Σ_j for j ≥ 1 with Σ_j-right adjoint action and M(0) contain the single element e₀. The structure maps are given by multi-wreath products.
- **2** Define $\mathcal{N}(j) = \{f_j\}$ a single point with trivial Σ -action.

Definition

An A_{∞} -operad \mathcal{O} is a Σ -free operad such that there exists a local Σ -equivalence $\mathcal{O} \to \mathcal{M}$ i.e. a morphism of non-symmetric morphism such that $\mathcal{O}(k) \to \Sigma(k)$ is an Σ_k -equivariant weak homotopy equivalence for each k.

An E_{∞} operad is a Σ -free operad such that each $\mathcal{O}(j)$ is contractible.

イロト イヨト イヨト ・

A **TD-map** $f: I^n \to I^n$ is a composition $T \circ D$, where T is a translation and D is a dilation (i.e. multiplication by scalars). More precisely, $f = f_1 \times \cdots \times f_j$, where $f_i: I \to I$ is a linear function $t \mapsto (y_i - x_i)t + x_i$ for some $0 \le x_i < y_i < 1$.

글 에 에 글 어 !!

A **TD-map** $f: I^n \to I^n$ is a composition $T \circ D$, where T is a translation and D is a dilation (i.e. multiplication by scalars). More precisely, $f = f_1 \times \cdots \times f_j$, where $f_i: I \to I$ is a linear function $t \mapsto (y_i - x_i)t + x_i$ for some $0 \le x_i < y_i < 1$.

Definition

Given $n \ge 0$, we let $C_n(k)$ be the space consisting of k-tuple (j_1, \dots, j_k) of TD-maps with disjoint images, which is a subset of $\operatorname{Map}(\sqcup_k I^n \to I^n)$ and inherits the compact-one topology. The collection $\{C_n(k)\}_{k\ge 0}$ forms an operad called **the little** *n*-cubes operad, whose Σ -action structure maps are given evidently.

3

Theorem

Given any space X, $\Omega^n X$ is a C_n -space.

We define $\theta_{n,j} \colon C_n(j) \times (\Omega^n X)^j \to \Omega X$ as follows

$$\theta_{n,j}(c,y)(v) = \begin{cases} y_r(u) & \text{if } c_r(u) = v \\ * & \text{if } v \notin \text{im } c \end{cases}$$

Theorem

Given any space X, $\Omega^n X$ is a C_n -space.

We define $\theta_{n,j} \colon C_n(j) \times (\Omega^n X)^j \to \Omega X$ as follows

$$\theta_{n,j}(c,y)(v) = \begin{cases} y_r(u) & \text{if } c_r(u) = v \\ * & \text{if } v \notin \text{im } c \end{cases}$$

Remark

If $X = \Omega X'$, then $\theta_n = \theta_{n+1} \circ \sigma_n$, where $\sigma_n \colon C_n \to C_{n+1}$ is given by $c_i \mapsto c_i \times \text{id}$ and θ_{n+1} is the action on $\Omega^{n+1}X'$.

Computations on the little *n*-cube operads

Definition

Let M be an n-dimensional manifold. The j-th configuration space F(M; j) of M is defined to be

$$\{(x_1, \cdots, x_j) \mid x_r \in M, x_r \neq x_s \text{ if } s \neq t\} \subset M^j$$

with subspace topology. Note that F(M; j) is a jn-dimensional manifold and F(M; j) with Σ_j -free right action.

글 에 에 글 어 !!

Computations on the little *n*-cube operads

Definition

Let M be an n-dimensional manifold. The j-th configuration space F(M; j) of M is defined to be

$$\{(x_1, \cdots, x_j) \mid x_r \in M, x_r \neq x_s \text{ if } s \neq t\} \subset M^j$$

with subspace topology. Note that F(M; j) is a jn-dimensional manifold and F(M; j) with Σ_j -free right action.

Theorem

We have a Σ_j -equivariant homotopy equivalence between $C_n(j)$ and $F(\mathbb{R}^n; j)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Computations on the little *n*-cube operads

Definition

Let M be an n-dimensional manifold. The j-th configuration space F(M; j) of M is defined to be

$$\{(x_1, \cdots, x_j) \mid x_r \in M, x_r \neq x_s \text{ if } s \neq t\} \subset M^j$$

with subspace topology. Note that F(M; j) is a jn-dimensional manifold and F(M; j) with Σ_j -free right action.

Theorem

We have a Σ_j -equivariant homotopy equivalence between $C_n(j)$ and $F(\mathbb{R}^n; j)$

A map $g: C_n(j) \to F(I^n; j)$ is defined by

$$g(c_1, \ldots, c_j) = (c_1(p), \cdots, c_j(p))$$
, where $p = (\frac{1}{2}, \cdots, \frac{1}{2})$

Theorem

Let M be an n-dimensional manifold $n \ge 2$. Let $Y_r \in F(M; r)$. We define

$$\pi_r: F(M-Y_r; j-r) \longrightarrow M-Y_r$$

$$(x_1, \dots, x_{j-r}) \longmapsto x_1$$

Then π_r is a fibration with fiber $F(M - Y_{r+1} - \{y_{r+1}\}; j - r - 1)$ over the point y_{r+1} and admits a cross-section if $r \ge 1$.

• • = • • = •

20 / 28

Theorem

Let M be an n-dimensional manifold $n \ge 2$. Let $Y_r \in F(M; r)$. We define

$$\pi_r: F(M-Y_r; j-r) \longrightarrow M-Y_r$$

(x₁,..., x_{j-r}) \longmapsto x₁

Then π_r is a fibration with fiber $F(M - Y_{r+1} - \{y_{r+1}\}; j - r - 1)$ over the point y_{r+1} and admits a cross-section if $r \ge 1$.

Corollary

If $n \geq 3$, then $\pi_i F(\mathbb{R}^n; j) = \sum_{r=1}^{j-1} \pi_i(\vee^r S^{n-1}); \pi_i F(\mathbb{R}^2; j) = 0$ for $i \neq 1$ and $\pi_1 F(\mathbb{R}^2; j)$ is constructed from the free groups $\pi_1(\vee^r S^1)$.

Corollary

 C_1 is an A_{∞} operad and C_n is a locally (n-2)-connected Σ -operad.

э

∃ ⇒

Corollary

 C_1 is an A_{∞} operad and C_n is a locally (n-2)-connected Σ -operad.

Definition

An E_n -operad is an operad that is locally Σ weak equivalent to C_n .

Corollary

 \mathcal{C}_1 is an A_∞ operad and \mathcal{C}_n is a locally (n-2)-connected Σ -operad.

Definition

An E_n -operad is an operad that is locally Σ weak equivalent to C_n .

Remark

We can view \mathcal{O}_n as the space of commutivity. Indeed, higher fold loop spaces will have better commutativity since their spaces of commutativity are more connected.

Corollary

 \mathcal{C}_1 is an A_∞ operad and \mathcal{C}_n is a locally (n-2)-connected Σ -operad.

Definition

An E_n -operad is an operad that is locally Σ weak equivalent to C_n .

Remark

We can view \mathcal{O}_n as the space of commutivity. Indeed, higher fold loop spaces will have better commutativity since their spaces of commutativity are more connected.

Theorem (The recognition principle)

Y is weakly homotopy equivalent to $\Omega^n Z$ if and only if Y is a group-like E_n -space.

< 47 ▶

$lacksymbol{1}$ Loop spaces and A_∞ -structures

n-fold loop spaces and symmetric operads

4 The monadic interpretation

∃ →

Why Quillen's higher K-theory is a generalized cohomology theory

Roughly speaking, generalized cohomology theories = spectra via Brown's representability. Thus the problem is why Quillen's *K*-theory space is actually a spectrum.

Theorem

The category of infinite loop spaces is equivalent to the category connective spectra.

Why Quillen's higher K-theory is a generalized cohomology theory

Roughly speaking, generalized cohomology theories = spectra via Brown's representability. Thus the problem is why Quillen's *K*-theory space is actually a spectrum.

Theorem

The category of infinite loop spaces is equivalent to the category connective spectra.

Theorem

Suppose E is a symmetric monoidal category. Then the classifying space of E is an E_{∞} -space.

イロト イヨト イヨト ・

э

Given a commutative ring R, Quillen's higher K-theory for K(R) is built from the classifying space of the category of finite projective R-modules. This space is denoted by BGL(R) and it is an E_{∞} -space.

The group

completion can be given by $M \rightarrow \Omega BM$.

Given a commutative ring R, Quillen's higher K-theory for K(R) is built from the classifying space of the category of finite projective R-modules. This space is denoted by BGL(R) and it is an E_{∞} -space.

Note that BGL(R) is an E_{∞} -spaces **but it is not group-like**! The group completion can be given by $M \to \Omega BM$.

Given a commutative ring R, Quillen's higher K-theory for K(R) is built from the classifying space of the category of finite projective R-modules. This space is denoted by BGL(R) and it is an E_{∞} -space.

Note that BGL(R) is an E_{∞} -spaces **but it is not group-like**! The group completion can be given by $M \to \Omega BM$.

Quillen's plus construction $BGL(R)^+$ is a kind of "higher group completion" on BGL(R). The *i*-th *K*-group of *R* is defined to be $\pi_i(BGL(R)^+)$ and $BGL(R)^+$ is a group-like E_∞ -space.

llows Loop spaces and A_∞ -structures

2 n-fold loop spaces and symmetric operads

3 Applications to algebraic K-theory

4 The monadic interpretation

→ ∃ →

A monad (C, μ, η) in a category \mathcal{D} consists of covariant functor $C: \mathcal{D} \to \mathcal{D}$ together with natural transformations of functors $\mu: C^2 \to C$ and $\eta: id \to C$ such that some evident diagrams commute. A morphism between monad is a natural transformation such that some evident diagrams commute.

A monad (C, μ, η) in a category \mathcal{D} consists of covariant functor $C: \mathcal{D} \to \mathcal{D}$ together with natural transformations of functors $\mu: C^2 \to C$ and $\eta: \mathrm{id} \to C$ such that some evident diagrams commute. A morphism between monad is a natural transformation such that some evident diagrams commute.

Example

Given a pair of adjunction (F, G): $A \to B$, $F \circ G$ form a monad on B.

A monad (C, μ, η) in a category \mathcal{D} consists of covariant functor $C: \mathcal{D} \to \mathcal{D}$ together with natural transformations of functors $\mu: C^2 \to C$ and $\eta: \mathrm{id} \to C$ such that some evident diagrams commute. A morphism between monad is a natural transformation such that some evident diagrams commute.

Example

Given a pair of adjunction (F, G): $A \to B$, $F \circ G$ form a monad on B.

Definition

Given a monad C on D, a C-algebra is an object $X \in D$ together with a structure map $\xi : CX \to X$ such that some evident diagrams commute.

イロト イポト イヨト イヨト

Given an operad $\mathcal{C}.$ The associated monad ($\mathcal{C},\mu,\eta)$ is constructed by

$$CX = \bigsqcup_{j \ge 0} \mathcal{C}(j) \times X^j / (\sim)$$

The relations consist of

• The compatibility of $\sigma_i : C(j) \to C(j-1)$ and $s_i : X^{j-1} \to X^j$;

Image: A image: A

э

Given an operad $\mathcal{C}.$ The associated monad ($\mathcal{C},\mu,\eta)$ is constructed by

$$CX = \bigsqcup_{j \ge 0} \mathcal{C}(j) \times X^j / (\sim)$$

The relations consist of

- The compatibility of $\sigma_i : C(j) \to C(j-1)$ and $s_i : X^{j-1} \to X^j$;
- **2** The Σ_j right action on C(j) and the Σ_j left action on X^j .

Given an operad $\mathcal{C}.$ The associated monad ($\mathcal{C},\mu,\eta)$ is constructed by

$$CX = \bigsqcup_{j \ge 0} \mathcal{C}(j) \times X^j / (\sim)$$

The relations consist of

- The compatibility of $\sigma_i : C(j) \to C(j-1)$ and $s_i : X^{j-1} \to X^j$;
- **2** The Σ_j right action on C(j) and the Σ_j left action on X^j .

Proposition

Given an operad C with associated monad C. Then the notion of a C-space is equivalent to the notion of a C-algebra.

Recall that (Ωⁿ, Σⁿ) is a pair of adjunction on the category of based spaces. Then ΩⁿΣⁿ is a monad.

- Recall that (Ωⁿ, Σⁿ) is a pair of adjunction on the category of based spaces. Then ΩⁿΣⁿ is a monad.
- 2 Let C_n be the monad associated to the little *n* cubes operad C_n . Then there is a map $\alpha_n : C_n X \to \Omega^n \Sigma^n X$ for each *n*.

- Recall that (Ωⁿ, Σⁿ) is a pair of adjunction on the category of based spaces. Then ΩⁿΣⁿ is a monad.
- **2** Let C_n be the monad associated to the little *n* cubes operad C_n . Then there is a map $\alpha_n \colon C_n X \to \Omega^n \Sigma^n X$ for each *n*.
- **(3)** α_n is a weak homotopy equivalence if X is connected.

28 / 28
- Recall that (Ωⁿ, Σⁿ) is a pair of adjunction on the category of based spaces. Then ΩⁿΣⁿ is a monad.
- **2** Let C_n be the monad associated to the little *n* cubes operad C_n . Then there is a map $\alpha_n \colon C_n X \to \Omega^n \Sigma^n X$ for each *n*.
- **3** α_n is a weak homotopy equivalence if X is connected.
- Passing to infinity by taking colimits, we have $\alpha_{\infty} \colon C_{\infty} X \to \Omega^{\infty} \Sigma^{\infty} X.$

- Recall that (Ωⁿ, Σⁿ) is a pair of adjunction on the category of based spaces. Then ΩⁿΣⁿ is a monad.
- **2** Let C_n be the monad associated to the little *n* cubes operad C_n . Then there is a map $\alpha_n \colon C_n X \to \Omega^n \Sigma^n X$ for each *n*.
- **3** α_n is a weak homotopy equivalence if X is connected.
- Passing to infinity by taking colimits, we have $\alpha_{\infty} \colon C_{\infty} X \to \Omega^{\infty} \Sigma^{\infty} X.$
- Using techniques in cosimplicial spaces, such as two-side bar construction, we may have the delooping machinery from α_n and α_∞.