
Methods of Homotopy Theory in
Algebraic Geometry

from the Viewpoint of Cohomology Operations

tongtong liang

September 27, 2022

abstract
This article is an exposition on the homotopy-theoretic tools of cohomology op-
erations applied to algebraic geometry and inner workings. We first survey on
the construction and mechanism of cohomology operations in classical homotopy
theory. Particularly, we aim to explain how these operations detect elements and
relations in homotopy classes along the Adams spectral sequences. Next, in order
to explore analogous mechanism of cohomology operations in algebraic geometry,
we introduce the framework of motivic homotopy theory as constructed by Morel
and Voevodsky. Based on this framework, we study the constructions and proper-
ties of motivic power operations and related spectral sequences in motivic stable
homotopy theory. Specifically, we would like to understand how motivic power op-
erations exhibit the coherence encoded by norms in motivic homotopy theory and
how motivic extended powers emerge in the motivic Adams spectral sequences.
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1 introduction

1.1 Overview

Morel and Voevodsky constructed motivic homotopy theory in the 1990s in order

to extend the framework of homotopy theory to algebraic geometry [MV99]. In

such a framework, many techniques of homotopy theory can be implemented in

the study of algebro-geometric objects. One of the most effective tools is power

operations in motivic cohomology [Voe03b, Voe10] in analogy to Steenrod opera-

tions in singular cohomology, which plays a central role in Voevodsky’s proofs of

the Milnor conjecture on mod-2 norm residue maps [Voe03a] and of the Bloch-Kato

conjecture on mod-ℓ norm residue maps [Voe11]. Based on the work of motivic

power operations, Dugger and Isaksen invented motivic Adams spectral sequences

[DI10] in the 2010s, which have facilitated computations in both algebraic geometry

and algebraic topology up to this day [IO20, IWX20]. Nevertheless, the systematic

use of motivic power operations and spectral sequences is not yet as mature as the

corresponding applications in classical homotopy theory. In particular, much of the

mechanism still waits to be explored of how motivic power operations detect struc-

tures of A1-homotopy classes . Here we intend to begin an investigation in this

direction, by giving a self-contained, motivated account of necessary background

and stating several specific questions.

1.2 What are methods of homotopy theory?

Classifying objects up to a specified equivalence relation is central to nearly all

of geometry and topology. Many beautiful theorems are solutions to particular

classification problems, such as the classification theorem of closed surfaces, or they

are motivated by classifications, such as partial solutions to the generalized Poincaré

conjecture. Some of the deepest results related to classification problems made

essential use of the methods of algebraic topology, translating geometric questions

to computations with algebra.

Algebraic topology carries out such translations from a geometric problem into

an algebraic problem by taking invariants. The effective working of this type of

methods depends on the following two aspects:

• the associated algebraic problem captures the essential features of the geomet-

ric problem;

• the associated algebraic problem is sufficiently simple to solve.

Actually, these two aspects are reciprocal to each other: the more geometric infor-

mation an algebraic problem encodes, the more difficult it is to solve. In this case,

homotopy theory plays a central role in reconciling these two aspects. The strat-

egy of homotopy theory to resolve a classification problem is to convert a task of

classifying objects (spaces, manifolds, etc.) into a task of classifying related (stable)

homotopy classes. This method works effectively because in the first place, with

proper set-up, homotopy classes are able to capture sufficient geometric features.

Here are some examples.
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Theorem 1.2.1 (Thom [Tho54]) Let G be a subgroup of GL(F,k) for F = R, C, or H.

Suppose X is an n-dimensional manifold. Then there is a bijection between the

set of cobordism classes of submanifolds of X with a G-structure (on their tangent

bundle) and the set of homotopy classes of continuous maps from X to a Thom

space MG:

{G-cobordism classes in X} [X,MG]
bijection

Theorem 1.2.2 (Pontryagin [Pon59]) There is a bijection between the set of cobor-

dism classes of framed k-dimensional submanifolds of Rn+k and the set of homo-

topy classes of continuous maps between spheres:

{k-dimensional framed cobordism classes in Rn+k} [Sn+k,Sn]
bijection

Theorem 1.2.3 (Steenrod [Ste51]) Given a topological group G, there is a bijection

between the set of isomorphic classes of principal G-bundles over a paracompact

space X and the set of homotopy classes of continuous maps from X to a classifying

space BG:

{isomorphism classes of principal G-bundles on X} [X,BG]
bijection

These theorems demonstrate a general principle that classifying geometric ob-

jects of a specific type is equivalent to classifying homotopy classes of maps to a

corresponding object. The homotopical structure of this “classifying object" largely

determines the classification in question.

In addition to the capability of homotopy classes to encode geometric informa-

tion, there are many tools to effectively address the associated algebraic problems

with homotopy classes, making them easier to solve. The most significant ones are

homological and cohomological machineries with operations, which we discuss in

the next subsection.

1.3 The yoga of cohomology operations and spectral sequences

The method of detecting homotopy classes by cohomology operations originated

from Steenrod’s work [Ste47]. In this work, Steenrod constructed a device called

cup-i products, for i ⩾ 1, as a higher-order analogue of cup product to give some re-

sults on the classification of homotopy classes of maps from an (n+ 1)-dimensional

complex to the n-dimensional sphere. Specifically, Steenrod used cup-i products

to derive a family of cohomology operations called Steenrod squares on mod-2

cohomology. These are the first examples of cohomology operations. From the

1950s to the 1960s, Steenrod developed the theory of such cohomology operations

[Ste52, Ste53b, Ste53a, Ste57]. On the mod-p cohomology, these cohomology oper-

ations along with the Bockstein operations became known as Steenrod operations.
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They were widely applied to solve various problems in topology and geometry. For

example, Borel and Serre proved that S2n, for n ⩾ 4, do not admit an almost com-

plex structure [BS53]. Around the same time, Thom solved the Steenrod problems

of determining when an integral or mod-2 homology class of a finite-dimensional

polyhedron can be realized as a manifold [Tho54].

In the previous examples, the crux is to exploit the actions of Steenrod operations

on cohomology rings. From this viewpoint, it is natural to use homological methods

to analyze these actions. Specifically, mod-p stable cohomology operations form an

algebra called the Steenrod algebra Ap. In the 1950s, Adem discovered a set of rela-

tions in Ap [Ade52, Ade57]; Serre showed that Steenrod operations and their Adem

relations fully determine the algebra Ap as generators and relations [Ser53]; Milnor

showed the Hopf algebra structure of Steenrod algebras and their duals [Mil58]. In

the same period, Adams invented his famous spectral sequences [Ada58] to show

the existence of Hopf elements in π2n−1(Sn) and π4n−1(S2n) for n ⩽ 4. The sig-

nificance of the Adams spectral sequences is to exhibit how Steenrod operations

detect homotopy classes and illustrate the extent to which the information is de-

tected. In particular, Greenlees explained how the Adams spectral sequences “cure

the blindness" of a cohomology theory in his enlightening article [Gre88].

In the 1960s, the monograph by Steenrod and Epstein was published and it gives

a comprehensive introduction to cohomology operations [Ste62]. Specifically, the

authors presented a systematic method to construct power operations by using

transfers and extended powers. It is tempting to think of and desirable in prac-

tice that such power operations be applicable to cohomology theories other than

mod-p ordinary cohomology and this systematic construction work more generally.

This is indeed the case. In fact, power operations on other generalized coho-

mology theories led to even deeper results than their ordinary analogues did. For

example, Adams and Atiyah constructed power operations in K-theory, called the

Adams operations [Ati66]. Equipped with these, Adams solved the problem of vec-

tor fields on spheres completely [Ada62], obtaining stronger results than those in

[SW51] with Steenrod squares. Adams and Atiyah also presented an elegant solu-

tion to the Hopf invariant one problem [AA66], which is conceptually much simpler

than Adams’s proof using secondary cohomology operations on ordinary cohomol-

ogy [Ada60]. Besides K-theory, tom Dieck constructed power operations in cobor-

dism theory [tD68]. Quillen then used these operations to show that the cobordism

ring MU∗(X) is generated by
⊕
i⩾0MU

i(X) as an MU∗(pt)-module, and deduced

his theorem on formal group laws that the complex cobordism ring is isomorphic

to the Lazard ring [Qui71]. As demonstrated above, the structure of cohomology

operations is prevalent and carries a wealth of information through various coho-

mology theories. For deeper investigations, we need a framework to conceptualize

cohomology theories in order to exploit this intrinsic structure of power operations.

In fact, stable homotopy theory serves as a desired framework.
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1.4 Cohomology theories and spectra

In [Bro62], E.H. Brown showed that for each generalized cohomology theory h∗,

there exists a sequence of spaces {En} with structure maps εn : En → ΩEn+1 such

that hn(Y) ∼= [Y,En] and the suspension isomorphisms are induced by the adjoint

maps of {εn}. These spaces with structure maps form a spectrum in the sense

of [Whi60] and we say h∗ is represented by the spectrum E = {En, ϵn}. For ex-

ample, ordinary cohomology theory with coefficient ring R is represented by the

Eilenberg-MacLane spectrum HR, complex K-theory is represented by the K-theory

spectrum KU, and G-cobordism theory is represented by the Thom spectrum MG

for a classical group G [Swi75]. In general, the representability theorem indicates

that the study of the generalized cohomology theories is equivalent to the study of

spectra, which are central objects in stable homotopy theory. Notably, the manip-

ulation of Steenrod operations can be simplified in the context of stable homotopy

theory. For example, Rudyak showed how to simplify Thom’s method using Steen-

rod operations [Tho54] by an approach with stable homotopy theory [Rud92]. More

applications of stable homotopy theory are documented in May’s review [May99].

Here, we focus on how power operations are present at the level of spectra. Given

a cohomology theory E, its degree-n cohomology operations are natural transforma-

tions from E∗ to E∗+n. By the Yoneda lemma and Brown’s representability theorem,

E∗E = [E,E]−∗ is the algebra of cohomology operations on E. If we take E = HFp,

the mod-p Steenrod algebra Ap ∼= HF∗
pHFp. Recall that Ap is generated by mod-p

Steenrod operations subject to Adem relations [Ser53], and Steenrod operations are

induced by extended powers [Ste62]. Therefore, in order to study power operations

in stable homotopy theory, we need to define extended powers for spectra.

1.5 How power operations work

In the 1970s, May and his collaborators built a theory of multiplicative E∞-structures

in spaces and spectra through a series of works [May72, CLM76, May77]. Further-

more, May demonstrated that an E∞-structure produces power operations [May70].

In particular, HR, KU, and Thom spectra are all E∞-spectra [May77], which illu-

minates why ordinary cohomology, complex K-theory, and cobordism theory each

possess power operations. Conversely, the existence of power operations does not

imply the existence of an E∞-structure, which means that E∞-structures may be too

stringent for utilizing power operations. A more suitable structure to supply power

operations is an H∞-structure, a weaker notion than E∞, which was introduced by

May in the 1980s [BMMS86]. There, May used equivariant half-smash products to

define extended powers of ring spectra and then defined the notion of H∞-structure

in terms of maps related to extended powers. Bruner showed that every H∞-ring

spectrum admits an associated generalized Adams spectral sequence and explained

how an H∞-structure converts cohomology operations into homotopy operations,

which is the essence of Adams-type spectral sequences. McClure analyzed the con-

nection between H∞-structures and power operations and showed that the power
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operations in mod-p ordinary cohomology, complex K-theory, and cobordism the-

ory coincide with the respective operations derived from H∞-structures.

1.6 Homotopy theory of smooth schemes

Besides within topology, algebraic geometry is a field which makes extensive use

of cohomological methods. We would naturally expect that the model of homo-

topy theory and cohomology operations can be modified in a suitable way so that

they function well in algebraic geometry. To achieve this, we need to address the

following two questions:

• How can we carry out homotopy theory in a general setting beyond topology?

• Cohomology theories in algebraic geometry are defined by sheaves, while

cohomology theories in algebraic topology are defined by spectra. How can

we generalize the homotopical framework to incorporate these two types of

cohomology?

For the first question, Quillen built a framework called homotopical algebra,

which distills the essential features for working with homotopy theoretic tools in

terms of axiomatic properties possessed by a model category [Qui67]. For the sec-

ond question, K.S. Brown used sheaves of spectra (or simplicial sets) to generalize

sheaf cohomology and related spectral sequences [Bro73]. These set the stage for

performing homotopy theory in algebraic geometry that is compatible with coho-

mology theories.

In the 1990s, Morel and Voevodsky constructed A1-homotopy theory of schemes,

also called motivic homotopy theory [MV99]. Under this framework, Voevodsky

constructed motivic power operations [Voe03b] and these operations led to an el-

egant solution of the Milnor conjecture [Voe03a] and the Bloch-Kato conjecture

[Voe11] (the earlier proofs of these conjectures had been given by Voevodsky in

the 1990s, but they were lengthy as the framework of motivic homotopy theory had

not been well developed at that time). Apart from the settlement of these famous

conjectures, the following are more evidences showing why Morel and Voevodsky’s

approach is a reasonable and fruitful one.

As an analogue of Theorem 1.2.3, Morel [Mor12], Asok, Hoyois, and Wendt

[AHW17] proved that given a smooth affine scheme X over a Noetherian commuta-

tive ring of a particular class, isomorphic classes of rank-r algebraic vector bundles

over X are in bijection with A1-homotopy classes of maps from X to the infinite

Grassmannian of r-planes.

As an analogue of Brown’s representability theorem from Section 1.4, Voevodsky

also constructed motivic stable homotopy theory to represent cohomology theories

in algebraic geometry [Voe98]. For example, motivic cohomology theory (analogous

to singular cohomology theory) is represented by the motivic Eilenberg-MacLane

spectrum HZmot, algebraic K-theory (analogous to complex K-theory) is repre-

sented by KGL, and algebraic cobordism theory (analogous to complex cobordism)

is represented by MGL.
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Moreover, motivic stable homotopy theory is deeply related to classical stable

homotopy theory. To be more concrete, let k be a field with an embedding k ↪→ C.

There is a realization functor

tC : SH(k) → SH

where SH(k) is the motivic stable homotopy category over k and SH is the classical

stable homotopy category. The striking coincidences are

HZmot HZ KGL KU MGL MU
tC tC tC

The properties of the realization functor tC indicate that motivic (stable) homotopy

theory is an adequate version of (stable) homotopy theory in algebraic geometry. It

is worth noting that tC plays a central role in Voevodsky’s earlier unpublished proof

of the Milnor conjecture [Voe96]. Voevodsky proved a purely topological result on

MU and HZ/ℓ. He then applied the result and the realization functor tC to prove

a motivic version of the result on motivic cohomology and algebraic cobordism,

which is essential to the proof of the Milnor conjecture. Specifically, the proof of

the topological results relies on the use of the Steenrod algebra, while the proof of

the motivic result relies on a motivic Steenrod algebra and the realization functor

tC which preserves the structure of these algebras. This technique demonstrates the

significance and efficacy of the methods of homotopy theory in algebraic geometry

via cohomology operations.

This profound connection between classical homotopy theory and motivic homo-

topy theory has not only advanced the research in algebraic geometry and number

theory, but also facilitated the study of classical stable homotopy theory. Isaksen

and Dugger constructed motivic Adams spectral sequences in the 2010s and used

them to improve the computations of the classical stable stems [DI10]. More re-

cently, the discovery of a deep relationship between the motivic Adams spectral

sequence and the algebraic Novikov spectral sequence has led to great extensions

of the computations to higher dimensions [IWX20, GWX21, BKWX22]. Central to

this relationship is an element τ in the mod-p cohomology of a point, which serves

as a parameter for a deformation between motivic and classical stable homotopy

categories. This element featured in Voevodsky’s computations with the motivic

algebra and its dual.

1.7 Recent work on motivic power operations

In [BH21], Bachmann and Hoyois constructed norm structures in motivic homotopy

theory. With this set-up, they defined a notion of normed motivic spectrum, as an

analogue of a structured ring spectrum in classical homotopy theory. As examples,

they proved motivic cohomology, algebraic K-theory, and algebraic cobordism can

be represented by normed motivic spectra.

The significance of their work is the encapsulation of the coherence data in a

multiplicative structure which was elusive previously. Note that encoding coher-
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Cohomology theories Classical E∞-ring spectra Normed motivic spectra
singular cohomology HZ HZmot

K-theory KU KGL

cobordism theory MU MGL

ence data is also the raison d’être of E∞-structures and H∞-structures in classical

homotopy theory. Therefore, in view of the following diagram, the norm structures

should give rise to motivic power operations (see [BH21, Example 7.25]).

E∞-structure
E∞-operad action

H∞-structure
E∞-operad homotopy action

power operations

multiplicative coherence data

intrinsic symmetry

motivic norm structure

motivic power operations

encoded in encoded in

pass to homotopy
encoded in

cohomological presentation

Bachmann-Hoyois

Similar to the case of E∞-structures, norm structures may be too strict for the

implementation of power operations. We expect that there is a motivic analogue

of H∞-structures and a preliminary for such a notion is the construction of motivic

extended powers. In [BEH21], Bachmann, Elmanto, and Heller defined a notion of

motivic colimit and used it to construct motivic extended powers as a generalization

of the formalism of motivic Thom spectra. This is the first in a series of papers they

plan to write on power operations in motivic stable homotopy theory.

2 power operations in classical homotopy the-
ory and motivic homotopy theory

2.1 Generalized cohomology theories in classical homotopy theory

2.1.1 Cohomology theories and Brown’s representability

Let Ab be the category of abelian groups, CW be the category of CW-complexes,

and CW2 be the category of CW-pairs. Let ρ : CW2 → CW2 be a functor defined by

ρ : CW2 −→ CW2

(X,A) 7−→ (A, ∅)

Definition 2.1.1 (Cohomology theory) An unreduced cohomology theory on CW2 is a

sequence of pairs {hn, δn}n∈Z, where hn : CW2 → Ab is a contravariant functor

and δn : hn ◦ ρ→ hn+1 is a natural transformation, such that the following axioms

are satisfied:
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• Homotopy axiom: The functors hn factor through the homotopy category

hCW2;

• Exactness axiom: For every pair (X,A) ∈ CW2, the sequences

· · · hn−1(A, ∅) hn(X,A) hn(X, ∅) hn(A, ∅) · · ·δn−1

• Excision axiom: For every pair (X,A) ∈ CW2 and an open subset U ⊂ A with

Ū ⊂ Ā, the inclusion j : (X − U,A − U) → (X,A) induces an isomorphism

hn(j) : hn(X−U,A−U) → hn(X,A) for all n ∈ Z.

Let CW∗ be the category of pointed CW-complexes.

Definition 2.1.2 A reduced cohomology theory on CW∗ is a sequence of contravariant

functors h̃n : CW → Ab together with natural isomorphisms

σm : h̃n → h̃n+1 ◦ Σ

where Σ is the suspension functor, satisfying the following axioms

• Homotopy axiom: The functors h̃n factor through the homotopy category

hCW∗;

• Exactness axiom: For subcomplex A ⊂ X ∈ CW∗, the following sequence is

exact:

h̃n(X/A) → h̃n(X) → h̃n(A).

Remark 2.1.3 Unreduced cohomology theories and reduced cohomology theories

are related. There is a functor

CW∗ −→ CW2

(X, x0) 7−→ (X, x0)

where we just take the base point x0 as a subcomplex. With this functor, an unre-

duced cohomology theory can be viewed as a reduced cohomology theory.

Definition 2.1.4 Let F : CW∗ → Set be a homotopy functor that factors through hCW.

Then F is said to be a Brown functor if it satisfies the following two axioms

• Wedge axiom: If X = ∧αXα and iα : Xα ↪→ X is the inclusion, then

∏
F(iα) : F(X) →

∏
α

F(Xα)

is a bijection.

• Mayer-Vietoris axiom: Given a subcomplexes A of X ∈ CW∗ with inclusion

iA : A ↪→ X, for any x ∈ F(X), we denote x|A := F(iA)(x) ∈ A.

Suppose A,B are two subcomplexes of X ∈ CW∗ and (a,b) ∈ F(A) × F(B)
such that a|A∩B = b|A∩B, then there exists c ∈ F(A∪B) such that c|A = a and

c|B = b.
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Theorem 2.1.5 (Brown’s representability theorem [Bro62]) Any Brown functor H :

CW∗ → Set is representable (in the homotopy category).

Proposition 2.1.6 Suppose h̃∗ is a reduced cohomology theory, then for each n ∈ Z,

h̃n is a Brown functor.

More specifically, there exists a CW-complex En ∈ CW∗ and ιn ∈ h̃n(En) such

that for any X ∈ CW,
[X,En] −→ h̃n(X)

[f] 7−→ f∗ιn

is a bijection for each n. Notably, the suspension isomorphism induced

[X,ΣEn]∗ ∼= [ΣX,En+1]∗ ∼= [X,ΩEn+1]∗

for each X ∈ CW∗. Then there exists a homotopy equivalence

fn : En → ΩEn+1

In summary, the data of a equivalent to a sequence of CW-complexes together

with some structures. The objects to characterize these features are called spectra.

2.1.2 Spectra and the stable homotopy category

Definition 2.1.7 (Classical definition of spectrum) A pair E = {En, εn}n∈Z of a

sequence of pointed topological spaces indexed by integers {En}n∈Z and basepoint-

preserving maps

εn : ΣEn → En+1

is called a spectrum.

If the adjoint of each εn
En → ΩEn+1

is a weak homotopy equivalence, it is called an Ω-spectrum.

A morphism between classical spectra f : E → F consists of pointed continuous

maps fn : En → Fn that are compatible with structure maps. The category of spectra

is called stable category.

Given a pointed space X, we define E∧ Xn := En ∧ X and the suspension spec-

trum Σ∞Xn := ΣnX. The notion of homotopy in the stable category is defined

on E ∧ I+ as an analogy to the notion of homotopy for spaces. By quotient the

homotopy relation, we then have the naive stable homotopy category.

Given two spectra X, Y, the mapping space between X and Y in the naive stable

homotopy category is defined to be

[X, Y]∗ :=
⊕
n∈Z

[ΣnX, Y]

where [ΣjX, Y] is the set of morphisms from ΣjX to Y modulo the homotopy and it

is an abelian group.
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Remark 2.1.8 Given an Ω-spectrum E, then we can defined an associated reduced

cohomology Ẽ∗ to be

Ẽ∗(X) := [ΣnX,E]∗

where X is a pointed space.

There are some issues for this classical definition: the definition of smash-product

in stable category is very complicated, see [Ada74]. To deal with the issue of smash

product, there are three different approaches: orthogonal spectra [MMSS01, MM02],

symmetric spectra [HSS00] and EKMM spectra [EKMM97]. A survey [Gre07] writ-

ten by Greenlees introduces these three approaches. Their advantages and disadvan-

tages are dicussed by Dugger in [BGH22]. In this proposal, we used the approach

of Elmendorf, Kriz, Mandell, and May.

Definition 2.1.9 Let U be an infinite-dimensional vector space with inner product

over R with countable basis; let F(U) be the category of finite dimensional sub-

spaces of U and inclusion maps.

A prespectrum (in the sense of EKMM) is a rule to associate a pointed space EV to

each object V in F(U) and a continuous map

σV ,W : ΣW−VEV → EW

to a morphism V → W in F(U), where W − V is the orthonormal subspace of V in

W and SV is the one-point compactification of V and ΣVX = X∧ SV for a pointed

space X.

A prespectrum (in the sense of EKMM) is a spectrum if the adjoint of each struc-

ture map is a homeomormphism for all V,W.

A map of prespectra f : E → F is a collection {fV : EV → FV } compatible with the

structure map.

Let P(U) (resp. S(U)) denote the category of prespecta (resp. spectra) indexed by

U.

A common choice of U is R∞ = 0⊕ R ⊂ R2 ⊂ R3 ⊂ · · · ⊂ Rn ⊂ · · ·

Proposition 2.1.10 The forgetful functor F : S(U) → P(U) has a left adjoint

L : P(U) → S(U)

Given a pointed space X, Σ∞X ∈ P(U) is defined to be

(Σ∞X)(V) = ΣVX
and Σ∞X ∈ S(U) is defined to be L(Σ∞X). Let S := Σ∞S0 be the sphere spectrum.

Given a pointed space X and E ∈ P(U), we defien E∧ X(V) := EV ∧ X; in S(U),

we denote L(E∧X) by E∧X. (This is an abuse of notation)

Define Map(X,E) ∈ P(U) by

Map(X,E)(V) := Map∗(X,E(V))

The homotopy in P(U) and S(U) is exhibited by E∧ I+.
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The cone CE := E∧ I; the path spectrum PE = Map(I,E)

Proposition 2.1.11 The category S(U) is complete and cocomplete; i.e. it is closed

under arbitrary small limit and colimit.

Definition 2.1.12 A map of spectra f : E→ F is called a weak equivalence if each fV
is a weak homotopy equivalence of topological spaces.

The homotopy category (quotient relation in the morphism spaces) of spectra

is denoted by hS(U); the category defined from hS(U) by formally inverting mor-

phisms represented by weak equivalences is denoted by h̄S(U) and it is called the

stable homotopy category of spectra.

Definition 2.1.13 For E ∈ S(U) and E ′ ∈ S(U ′),,define E∧ E ′ ∈ S(U⊕U ′) by

E∧ E ′(V ⊕ V ′) = EV ∧ EV ′

Definition 2.1.14 Let f : U→ U ′ be a linear isometry, then given E ∈ S(U), we define

f∗E(V) := E(f
−1V)

for V ∈ F(U ′).

Definition 2.1.15 Let I(U,U ′) be the space of linear isometry from U to U ′ with

compact-open topology.

Fix a universe U, we define

L(i) := I(U⊕i,U)

Proposition 2.1.16 The collection L = {L(i)}i∈N has the following properties:

1. Each L(i) is contractible;

2. The maps

γ : L(k)×L(j1)× · · · ×L(jk) → L(j1 + · · ·+ jk)

given by (g; f1, . . . , fk) 7→ g ◦ (f1 ⊕ · · · ⊕ fk) make them form an E∞-operad.

Proposition 2.1.17 (Hopkins) For i ⩾ 1 and j ⩾ 1, the diagram

L(2)×L(1)×L(1)×L(i)×L(j)

L(2)×L(i)×L(j)

L(i+ j)

id×γ2γ×id

γ

is a split coequalizer of spaces. Therefore,

L(i+ j) ∼= L(2)×L(1)2 L(i)×L(j)

Note that the contruction of such twisted semi-product is very complicated.



power operations in classical homotopy theory and motivic homotopy theory 14

Proposition 2.1.18 Given a topological space A, for any continuous map α : A →
I(U,U ′), there exists a functor:

A⋉ (−) : S(U) → S(U ′)

such that

1. If α is an identity map, then so is A⋉−;

2. For continuous maps:

α : A→ I(U,U ′)β : B→ I(U ′,U ′′)

define a composition by

(A×B) → I(U,U ′)× I(U ′,U ′′) → I(U,U ′′)

Then

(A×B)⋉ (E1 ∧ E2) ∼= (A⋉ E1)∧ (B⋉ E2).

3. A⋉ (E∧X) ∼= (A⋉ E)∧X.

4. A⋉ Σ∞X ∼= Σ∞(A+ ∧X) for any pointed space X.

Proof. See [EKMM97, Appendix A].

Therefore, we have an L(1) action on E ∈ S(U):

L(1)⋉ E→ E

Definition 2.1.19 For a spectrum E, we define

LE := L(1)⋉ E.

An L-spectrum is a spectrum E together with

η : E→ LE, ξ : LE→ E

such that the following diagrams commute:

LLE LE

LE E

µ

Lξ ξ

ξ

E LM

E

η

ξ

The category of L-spectra index by the university U is denoted by S(U)[L].
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Definition 2.1.20 For E,E ′ ∈ S(U), define E∧L E
′ to be the following coequalizer

diagram:

(L(2)×L(1)×L(1))⋉ (E∧ E ′) L(2)⋉ (E∧ E ′)

L(2)⋉ (E∧ E ′) E∧L E
′

γ⋉id

id⋉(ξ×ξ)

Proposition 2.1.21 For any j-tuple M1, . . . ,Mj of L-spectra, there is a canonical

isomorphism

M1 ∧LM2 ∧L · · ·∧LMj ∼= L(i)∧L(1)j (M1 ∧ · · ·∧Mj).

Proposition 2.1.22 The functor

L : S(U) → S(U)[L]

is the left adjoint to the forgetful functor

S(U)[L] → S(U)

Proposition 2.1.23 Given any linear isometry f : U⊕U→ U, we have

LE∧L LE ′ ∼= L(2)⋉ (E∧ E ′) ∼= Lf∗(E∧ E
′)

Proposition 2.1.24 In the category of L-spectra, we have the following natural iso-

morphisms:

τ : E∧L E
′ ∼= E ′ ∧L E, (E1 ∧L E2)∧L E3 ∼= E1 ∧L (E2 ∧L E3)

There is an issue: Since the sphere spectrum S is an L-spectrum, it is expected to

be a unit for the smash product, however, S ∧L E may not be isomorphic to E. That

is why we need the concept of S-module.

Proposition 2.1.25 For an L-spectrum E, we have a natural map of L-spectra

λE : S ∧L E→ E

satisfying the following conditions:

1. The following diagram commutes:

E∧L S ∧L E
′ S ∧L E∧L E

′

S ∧L E∧L E
′ E∧L E

′

τ∧id

id∧τ
id∧λE ′

λE∧id

λE∧id

2. λ is a weak equivalence of L-spectra.

3. λ : S ∧L S → S is an isomorphism of L-spectra.

Definition 2.1.26 An A∞-ring spectrum is a monoid in the category of L-spectra and

an E∞-ring spectrum is a commutative monoid in the category of L-spectra.
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Remark 2.1.27 Suppose M is an L-spectrum and let Mj be the j-fold power with

respect to ∧L, then we define the monad of tensor algebra on S(U):

TM :=
∨
j⩾0

Mj

and the monad of polynomial algebra on S(U):

PM :=
∨
j⩾0

Mj/Σj

where Σj act on Mj by permuting factors. The structure of an A∞ ring spectrum M

is exhibited by TM →M that with suitable commutative properties; The structure

of an E∞-ring spectrumM is exhibited by PM→M that with suitable commutative

properties.

For a (pre)spectra X, let Xj be its j-fold external smash product, then we may

define

BX :=
∨
j⩾0

L(j)⋉Xj

and

CX :=
∨
j⩾0

(L(j)⋉Xj)/Σj

With this setting, we can defined A∞ ring (pre)spectra and E∞-ring (pre)spectra for

general (pre)spectra. Note that B ∼= TL and C ∼= PL, according to Proposition

2.1.21. In some context, (L(j)⋉Xj)/Σj is denoted by (Xj)hΣj .

Definition 2.1.28 An L-spectrum is called an S-module if λ : S ∧L E → E is an

isomorphism of L-spectra.

For S-modules M,N, we denote

M∧S N :=M∧LN

The category of S-modules indexed by the university U is denoted by MS(U).

Proposition 2.1.29 The category of S-modules is complete and cocomplete.

Definition 2.1.30 An S-algebra is an algebra in the symmetric monoidal category

MS(U).

Example 2.1.31 The Thom spectrum MOU indexed by the university U is defined

to be

MOU(U) := Gr|U|(U⊕U)γ|U|

where |U| = N is the dimension of U, Gr|U|(U⊕ U) is the Grassmannian space of

N-planes in U⊕U and Gr|U|(U⊕U)γ|U| is the Thom space of the universal bundle

over the Grassmannian. Note that MOU is a commutative S-algebra, namely an

E∞-ring spectra. Then we have the natural map:

MO(U)U ∧MO(V)U MO(U⊕ V)U⊕U
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Given an element in L(2), there is a map MO(U⊕ V)U⊕U → MO(U⊕ V)U. Then

combine these maps, we have

L(2)∧MO(U)U ∧MO(V)U MO(U⊕ V)U

2.1.3 Other models for stable homotopy theory

In addition to the EKMM formalism of stable homotopy category, we still have

another choices of models for stable homotopy theory. For example,

• A symmetric spectrum consists of a sequences of spaces Xn for n ⩾ 0 and

structure maps σn : S1 ∧Xn → Xn+1 such that Xn is equipped with an action

of Σn and the iterated structure maps σp : (S1)∧p ∧ Xq → Xp+q is Σp × Σq-

equivariant. This notion is introduced by Hovey, Shipley and Smith [HSS00].

• An orthogonal spectrum is to assign each finite-dimensional real inner product

space V a pointed O(V)-space XV , together with structure maps σV ,W : SV ∧

XW → XV⊕W . This notion is introduced by Mandell, May, Schwede and

Shipley [MMSS01, MM02].

S-modules, symmetric spectra and orthogonal spectra are three popular models

for stable homotopy theory. Actually, they are equivalent in the sense of Quillen.

A Quillen equivalence between S-modules and orthogonal spectra can be found

in [MM02], and a Quillen equivalence between S-modules and symmetric can be

found in [Sch01]. The following table demonstrates their advantages and disadvan-

tages respectively.

Advantages Disadvantages
S-modules All the objects are fibrant. The unit is not cofibrant.

Weak equivalences are easy to understand. The definition is complicated.
Symmetric The unit is cofibrant. Fibrant replacement is required.

spectra The objects are easy to define. Weak equivalences are hard to describe.
Orthogonal The unit is cofibrant. Fibrant replacement is required.

spectra Weak equivalences are easy to understand.

2.2 Power operations in topology

2.2.1 Steenrod operations in ordinary cohomology

Definition 2.2.1 (Cohomology operations) Let n,m be two integers and let π,G

be two abelian groups, a cohomology operation of type (n,π;m,G) is a collection of

functions φX : Hn(X;π) → Hm(X;G) for each CW-complex X such that for any

continuous map f : X→ Y, the following diagram commutes

Hn(X;π) Hq(X;G)

Hn(Y;π) Hm(Y;G)

φX

f∗

φY

f∗
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Clearly, the sum of two cohomology operations of the same type is still a cohomol-

ogy operations. We denote the group of cohomology operations of type (n,π;m,G)

by O(n,π;m,G).

A stable cohomology operation of type (r,π,G) is a sequence of cohomology opera-

tions φn ∈ Stab(n,π;n+ r;G) for n = 1, 2, 3, . . . such that for every X and every n,

the following diagram commutes

Hn(X;π) Hn+r(X;G)

Hn+1(ΣX;π) Hn+r+1(ΣX;G)

Σ

(φn)X

Σ

(φn+1)ΣX

where Σ is the suspension isomorphism.

Let Stab(r;π,G) be the collection of stable cohomology operations of type (r,π;G).

Definition 2.2.2 The i-th Steenrod square Sqi consists of stable cohomology opera-

tions

Sqi : Hn(X; F2) → Hn+i(X; F2)

for each n ∈ N satisfying the following axioms

1. For any cocycle α, we have

Sqiα =


0, i > dimα,

α2, i = dimα,

α, i = 0.

2. The following Cartan’s multiplication formula holds:

Sqi(uv) =
∑
j+k=i

Sqj(u)Sqk(v)

Proposition 2.2.3 Sq1 is exactly the Bockstein operation associated with the short

exact sequence on the coefficient

0 Z/2 Z/4 Z/2 0

Definition 2.2.4 Let p be an odd prime and let β : H∗(X; Fp) → H∗+1(X; Fp) be the

Bockstein operation associated with the short exact sequence on the coefficient

0 Z/p Z/p2 Z/p 0

The i-th mod-p reduced power operations Pi consists of stable cohomology opera-

tions

Pip : H
n(X; Fp) → Hn+2i(p−1)(X; Fp)

for each n ∈ N satisfying the following axioms
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1. For any cocycle α, we have

Pipα =


0, 2i > dimα,

αp, 2i = dimα,

α, i = 0.

2. The following Cartan’s multiplication formula holds:

Pip(uv) =
∑
j+k=i

Pjp(u)P
k(v)

Theorem 2.2.5 The cohomology operations in Definition 2.2.2 and Definition 2.2.4

exist uniquely.

Theorem 2.2.6 (Adem relation) For Steenrod squares, if 0 < a < 2b, then,

SqaSqb =

[a/2]∑
j=0

(
b− 1− j

a− 2j

)
Sqa+b−jSqj

For odd prime p, if a < pb, then

PapPbp =

[a/p]∑
j=0

(
(p− 1)(b− j) − 1

a− pj

)
Pa+b−jp Pjp

if a ⩽ b, then

PapβPbp =

[a/p]∑
j=0

(
(p− 1)(b− j) − 1

a− pj

)
βPa+b−jp Pjp

+

[(a−1)/p]∑
j=0

(−1)a+j−1
(
(p− 1)(b− j) − 1

a− pj− 1

)
βPa+b−jp Pjp

The mod-p Steenrod operation Stip is defiend as

Stip =


Pkp, i = 2k(p− 1)

βPkp, i = 2k(p− 1) + 1

0, otherwise.

Definition 2.2.7 (Steenrod algebra) The mod-p Steenrod algebra Ap is the graded

associative Fp-algebra generated by Pip (Sqi if p = 2) and the Bockstein operation β,

subject to the Adem relations, where dim Sqi = i, dim Pip = 2i(p− 1) and dimβ = 1.

A 2-admissible sequence I is an ordered sequence with finitely many positive inte-

gers {i1, . . . , ir} such that i1 ⩾ 2i2, . . . , ir−1 ⩾ 2ir. We denote SqI = Sqi1 · · · Sqir .

The total degree of the sequence I is defined to be
∑
m im. The length of I is the

number of non-zero elements in I.

Proposition 2.2.8 The iterated Steenrod squares SqI for all admissible sequences

form a basis of A2.
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The case of odd prime is more complicated: a p-admissible sequence I is an order

sequence

(ε0, s1, ε1, s2, . . . , εk, sk, 0, 0, . . . )

where ε = 0, 1 and si is a positive integer such that si ⩾ psi+1 + εi for each i ⩾ 1.

We denote

PIp = βε0Ps1p βε1Ps2p βε2 · · ·Pskp βεk

Proposition 2.2.9 Ap is linearly generated by PIp for all p-admissible sequences.

Proposition 2.2.10 (Milnor [Mil58]) The Steenrod algebra Ap is a Hopf algebra.

2.2.2 Algebraic Steenrod operations

This subsubsection mainly refers to May’s algebraic approach to Steenrod opera-

tions [May70].

Let π ⊂ Σr be a subgroup and Cp ⊂ Σp be the cyclic group generated by (12 . . . p).

Let V be a free k[Σr] resolution of k, W be a free k[π]-resolution of k and j :W → V

be an inclusion induced by π ⊂ Σr. In particular, if π = CP, then we let W be the

Tate resolution of k. Let k[Cp] = k[T ]/(Tp), where T can be identified as (12 · · ·p),
the Tate resolution W is defined to be

Wi = k[Cp] · ei, d(e2i) = (1− T)e2i−1, d(e2i+1) = (1+ T + · · ·+ Tp−1)e2i

Given a Z-graded homotopy associated and commutative differential k-algebra

K, we let Σr act on Kr by permuting factors and let Σr act on K trivially. Note that

we assign the degree of Wi ⊗K (Kr)n to be n− i.

Definition 2.2.11 A (π, k)-pair (K, θ) consists of a Z-graded homotopy associated

and commutative differential k-algebra K and a k[π]-equivariant map θ :W⊗k Kr →
K such that

1. θ(e0 ⊗k x1 ⊗k · · · ⊗k xr) = x1 . . . xr.

2. There exists k[Σr]-morphism ϕ : V ⊗k Kr → K such that θ = ϕ ◦ (j⊗k id).

A morphism between (K, θ) and (K ′, θ ′) is a morphism of k-complexes f : K→ K ′

such that f ◦ θ ≃ θ ′ ◦ (id ⊗k fr).
Let C(π,k) be the category of (π,k)-pairs.

The tensor product (K, θ) ⊗k (K ′, θ ′) is defined to be (K ⊗k K ′, θ̃), where θ̃ is

defined to be the following composition

W ⊗k (K⊗k K ′)r W ⊗kW ⊗k Kr ⊗k K ′r W ⊗k K⊗kW ′ ⊗k K ′ K⊗k K ′ψ⊗kσ id⊗kτ⊗lid θ⊗θ ′

where ψ : W → W ⊗kW is a k[π]-homomorphism covering k ∼= k⊗k k, σ is the

shuffle permutation and τ is the transposition.

Construction 2.2.12 For any (K, θ) ∈ C(Cp, Fp), θ is a mod-p total Steenrod opera-

tion. If the product K⊗K → K can be extended to (K, θ)⊗ (K, θ) → (K, θ), then the

morphism in C(Cp, Fp) exhibits Cartan formula for the Steenrod operations.

Let U be a k[Σp2 ]-resolution of k and let τ = Cp ≀ Cp ⊂ Σp2 be the p-Sylow

subgroup. Note that τ = Cp ≀ Cp acts on W ⊗kWp “diagonally", where one of
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Cp acts naturally on W and the other Cp acts on Wp by permuting factors. Let

ω :W ⊗Wp → U be a k[τ]-homormophism extending the identity k→ k. Then the

following homotopy commutative diagram demonstrates the Adem relations.

(W ⊗kWp)⊗k Kp
2

U⊗k Kp
2

K

W ⊗k (W ⊗k Kp)p W ⊗k Kp

shuffle

ω⊗kid

ξ

1⊗kθp

θ

Example 2.2.13 For any CW-complex X, let K−n = Cn(X; Fp). Then there exists

a map θ such that (K, θ) ∈ C(Cp, Fp) canonically. In other words, there exists a

functor from the category of CW-complexes to C(Cp, Fp). In particular, such θ is

exactly a mod-p total Steenrod operation at cochain complex level.

If p = 2 and x ∈ Hq(K), then the nth Steenrod squares are defined as follows.

Sq−n(x) := Sqn(x)

0 n < q

θ∗(en−q ⊗ xp) n > q

If p is an odd prime, we define Pi(x) =(−1)iν(t− s)θ∗(e(2i−t+s)(p−1) ⊗k xp) 2i ⩾ t− s

βPi(x) =(−1)iν(t− s)θ∗(e(2i−t+s)(p−1)−1 ⊗k xp) 2i > t− s

where ν(n) = (−1)j(m!)ε for n = 2j+ ε and m = (p− 1)/2.

More details can be found in [Ste62, Chapter VII].

Example 2.2.14 Fixed a commutative unital ring k, given an arbitrary topological

space X, C∗(X;k) is in C(Σn,k) for any n. In other words, C∗(−;k) is a functor from

the category of spaces to C(Σn,k).

2.2.3 Power operations on H∞-ring spectra

Construction 2.2.15 Given an S-module M, the j’th extended power of M is defined

to be

DjM = (EΣj)+ ∧Mj)/Σj

where EΣj is the universal principal-Σj bundle and Mj is the j-fold power of M

with respect to ∧S.

There are natural maps associated to extended powers:

• ιj :Mj → DjM;

• αj,k : DjM∧DkM→ Dj+kM induced by the inclusion Σj × Σk ↪→ Σj+k;

• βj,k : DjDkM→ DjkM induced by the wreath product Σj ≀ Σk → Σjk;

• δj : Dj(M∧N) → DjM∧DjN.
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The extended powers and these maps for pointed spaces are defined similarly

and they compatible with the suspension functor. Given two pointed spaces X, Y,

the following diagrams commutative up to homotopy:

DjΣ
∞X

Σ∞(Xj)

Σ∞DjX

Dj(Σ
∞X∧ Σ∞Y) Dj(Σ

∞X)∧Dj(Σ∞Y)

Σ∞Dj(X∧ Y) Σ∞(DjX∧DjY)

DjDkΣ
∞X DjkΣ

∞X

Σ∞DjDkX Σ∞DjkX

ιj

Σ∞ιj

δj

Σ∞δj

βj,k

Σ∞βj,k

DjΣ
∞X∧DkΣ

∞X Di+kΣ
∞X

Σ∞(DjX∧DkX) Σ∞Dj+kX

αj,k

Σ∞αj,k

Let τ : E∧ F→ F∧ E denote the commutative isomorphism in MS(U). The follow-

ing lemmas demonstrate the homotopy coherence data carried by extended powers.

Lemma 2.2.16 {αj,k} is a commutative and associative system up to homotopy,

namely for any i, j,k, we have

• αj,k ◦ τ ≃ αk,j;

• αi+j,k ◦ (αi,j ∧ id) ≃ αi,j+k ◦ (id ∧αj,k);

Lemma 2.2.17 {βj,k} is an associative system up to homotopy, namely for any i, j, k,

we have

βij,k ◦βi,j ≃ βi,jk ◦Diβj,k.

Lemma 2.2.18 Each δj is commutative and associative with respect to the smash

product up to homotopy:

• τ ◦ δj ≃ δj ◦Djτ;

• (δj ∧ id) ◦ δj ≃ δj ◦ (id ∧ δj)
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Lemma 2.2.19 The following diagrams commute up to homotopy:

Mj ∧Mk Mj+k (DkM)j

DjkM

DjM∧DkM Dj+kM DjDkM

ιj∧ιk ιj+k ιj

αk,...,k

αj,k
βj,k

Lemma 2.2.20 Let νj be the evident shuffle isomorphism, then the following dia-

gram commute up to homotopy

(E∧ F)j Ej ∧ Fj

Dj(E∧ F) DjE∧DjF

νj

ιj ιj∧ιj

δj

Lemma 2.2.21 The following diagram commutes up to homotopy:

DiDkM∧DjDkM DikM∧DjkM

Di+jDkM Dik+jkM

βi,k∧βj,k

αi,j αik,jk

βi+j,k

Lemma 2.2.22 The following diagrams commute up to homotopy

Dj(M∧N)∧Dk(M∧N)) Dj+k(M∧N)

DjM∧DjN∧DkM∧DkN DjM∧DkM∧DjN∧DkF Dj+kM∧Dj+kN

DjDk(M∧N) Djk(M∧N)

Dj(DkM∧DkN) DjDkM∧DjDkN DjkM∧DjkN

αj,k

δj∧δk δj+k

id∧τ∧id αj,k∧αj,k

βj,k

Djδk δjk

δj βj,k∧βj,k

Lemma 2.2.23 The following diagram commutes up to homotopy:

Di(DjM∧DkM) DiDjM∧DiDkM DijM∧DikM

DiDj+kM Dij+ikM

δi

Diαj,k

βi,j∧βi,k

αij,ik

βi,j+k
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Definition 2.2.24 An H∞-ring spectrum is a S-module M together with ξj : DjM→
M for j ⩾ 0 such that ξ1 is the identity map and the following diagrams commute

for j,k ⩾ 0 up to homotopy

DjM∧DkM Dj+kM DjDkM DjkM

M∧M D2M M DjM M

ξj∧ξk

αj,k

ξj+k

βj,k

Djξk ξjk

ι2 ξ2 ξj

Construction 2.2.25 Let E be an H∞-ring spectrum and Ẽ be the associated cohomol-

ogy theory, the j-total power operation Pj is defined to be

Ẽ∗(X) Ẽ∗(BΣj+ ∧X)

[Σ∞X,E] [Dj(Σ
∞X),DjE] [Σ∞(DjX),E] [Σ∞(BΣj+ ∧X),E]

Pj

Dj ◦ξj ∆∗

where ∆∗ is induced by the diagonal map X→ Xj.

If we have Ẽ∗(BΣj+ ∧ X) ∼= Ẽ∗(BΣj+) ⊗π∗E Ẽ
∗(X), then given α ∈ E∗BΣj and

x ∈ Ẽr(X), we can define α∗(x) to be DαP(x), where Dα∗ : Ẽr(X) → π∗E is the dual

function of α.

2.3 The Adams spectral sequences

The outline of this subsection is presented as follows.

1. Subsubsection 2.3.1: We study Hopf algebroids and the associated cohomo-

logical setting. In particular, we concern the notion of normalized canonical

resolution C(Γ ,M) and the notion of canonical complex C(N, Γ ,M) (Definition

2.3.9), which provide us with explicit computable resolutions and complexes.

Note that the cohomology of C(N, Γ ,M) is exactly ExtΓ (N,M).

2. Subsubsection 2.3.2: We show that for each suitable triple (N, Γ ,M) over Fp,

C(Γ ,M) or C(N, Γ ,M) is a (π, Fp)-pair in the sense of Definition 2.2.11, where

we may simply call this structure algebraic extended power informally. Thus

there exists power operations on the cohomology of C(N, Γ ,M).

3. Subsubsection 2.3.3: We introduce the notion of Adams resolution of a spec-

trum and the associated spectral sequences called Adams spectral sequences.

The key construction is the canonical Adams resolution (Construction 2.3.20).

Specifically, given a spectrum X and Y, the associated complex of the canon-

ical Adams resolution of Y with respect to E and X is exactly the canonical

complex C(E∗X,E∗E,E∗Y), so that we can apply the tools in the previous two

subsubsections on Adams spectral sequences. In this way, we have power

operations in the E2-page of an Adams spectral sequence.

4. Subsubsection 2.3.4: Given an H∞-ring spectrum Y, the unique (up to ho-

motopy) algebraic extended power structures on C(π∗E,E∗E,E∗Y) mentioned
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in Subsubsection 2.3.2 can be derived from the extended powers in the H∞-

structure on Y. In detail, we construct a “filtration" of ξ : DπY → Y (See The-

orem 2.3.33) and show this “filtration" induced the algebraic extended power

structure on C(π∗E,E∗E,E∗Y) (See Corollary 2.3.35).

5. Subsubsection 2.3.5: In order to demonstrate how the power operations de-

tect the homotopy operations on π∗(Y) associated to the extended power, we

introduce a notion of generalized Adams spectral sequences (see Theorem

2.3.38). Then there is such a spectral sequence E∗,∗(S,Ξ) associated to a fil-

tration Ξ of DπSn, and each x ∈ πn(Y) determines a morphism of spectral

sequences from E∗,∗(S,Ξ) to E∗,∗(S, Y), which exhibits E∗,∗(S, Y) is a module

over E∗,∗(S,Ξ). This module structure indicates that how the power operations

detect the homotopy operations.

2.3.1 Cohomology of Hopf algebroid

Definition 2.3.1 A Hopf algebroid over a commutative ring k is a pair of commutative

k-algebras (A, Γ) endowed with maps

• ηL : A→ Γ called left unit or source,

• ηR : A→ Γ called right unit or target,

• Ψ : Γ → Γ ⊗A Γ called coproduct or composition,

• ϵ : Γ → A called counit or identity,

• c : Γ → Γ called conjugation or inverse.

and the data satisfies the following rules:

1. ηL is flat.

2. ϵ ◦ ηL = ϵ ◦ ηR = idA.

3. Γ Ψ−→ Γ ⊗A Γ
q−→ Γ ⊗A A ∼= Γ is the identity map, where q = idΓ ⊗ ϵ or ϵ⊗ idΓ .

4. (idΓ ⊗Ψ) ◦Ψ = (Ψ⊗ idΓ ) ◦Ψ.

5. c ◦ ηR = ηL and cηL = ηR.

6. c ◦ c = idΓ .

7. There exists maps such that the following diagram commutes

Γ Γ ⊗k Γ Γ

Γ ⊗A Γ

A Γ A

c◦id id◦c

ηR

ϵ ϵ

Ψ

ηL

Remark 2.3.2 (ηL,ηR) exhibits Γ as an A-bimodule and Γ is ab A-comodule.
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Remark 2.3.3 Given a Hopf algebroid (A, Γ ,ηL,ηR,Ψ, ϵ, c) and a commutative k-

algebra R, there is a groupoid whose objects are Homk(A,R) and its morphisms are

Homk(Γ ,R). In summary, a Hopf algebroid determines a functor from the category

of k-algebras to the category of groupoids.

Definition 2.3.4 Given a Hopf algebroid (A, Γ), a right Γ -comodule M is an right A-

module M together with an A-linear map ψM :M→M⊗A Γ such that (idM ⊗ ϵ) ◦
ψM = idM and (idM⊗Ψ) ◦ψM = (ψM⊗ idA) ◦ψM. The category of Γ -comodules

is denoted by ComodΓ .

Remark 2.3.5 Given a right A-module M, M⊗A Γ is a right Γ -comodule naturally,

which is called the extened comodule of M.

Suppose P,Q are two graded right A-modules, then we define

HomtR(P,Q) := {f : P∗ → Q∗+t | f is A-linear}

In this way, HomA(P,Q) is a graded A-module.

If P,Q are right Γ -comodules, then let HomΓ (P,Q) be the submodule of HomA(P,Q)

consisting of Γ -comodule morphisms.

Theorem 2.3.6 (Comparison theorem) If X = {0 → M → X0 → X1 → · · · } is an

A-split exact sequence of right Γ -comodules and Y = {0→ N→ Y0 → Y1 → · · · } is a

complex of injective right Γ -comodules, then for each Γ -homomorphism f :M→ N,

there is a unique chain homotopy class of Γ -homomorphisms F : X → Y extended f,

where X = {X0 → X1 → · · · } and Y = {Y0 → Y1 → · · · }.

Let ExtiA be the ith right derived functor of HomΓ relative to injective and Γ -split

comodules resolution.

Definition 2.3.7 Given two right Γ -comodules, the right Γ -comodule structure on

M⊗AN is defined to be

M⊗AN
ψM⊗ψN−−−−−−→M⊗A Γ ⊗AN⊗ Γ id⊗τ⊗id−−−−−−→M⊗AN⊗A Γ ⊗A Γ

id⊗id⊗ϕ−−−−−−→M⊗AN⊗A Γ

where ϕ : Γ ⊗A Γ → Γ is the morphism induced by the multiplication in Γ .

Remark 2.3.8 Note that we can always embed the category of left (or right) A-

modules into the category of A-bimodules by setting a ·m = (−1)|m||a|m · a. Thus

the tensor product between two right A-modules can be identified with the ten-

sor product between the associated A-bibmodules. This can be done because A is

commutative (in the sense of graded algebras).

Let ΓR (resp. ΓL) be a right A-module (resp. left A-module) by forgetting the left

A-action induced by ηL (resp. the right A-action induced by ηR). The A-bibmodule

structure of Γ and ΓR are different with this setting. However, given a right A-

comodule M, M⊗A Γ ∼=M⊗A ΓR, see [BMMS86, P92]. Let θ :M⊗A ΓR →M⊗A Γ
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be the isomorphism (as right Γ -comodules). Specifically, the following diagram

commutes.
M⊗A ΓR

M

M⊗A Γ

θ

id⊗ηR

ψM

Let p : ΓR → Γ̄ be the cokernel of ηR and given an element x ∈ Γ , let x̄ := p(x).

Define t : Γ̄ → ΓR by x̄ 7→ x−ηR ◦ϵ(x). Note that t is well-defined, since if x = ηR(y),

then t(x̄) = ηR(y) − ηR ◦ ϵηR(y) = 0. Then for any right Γ -comodule M, we have

the following Γ -split short exact sequence

p M M⊗A ΓR M⊗A Γ̄ 0
id⊗AηR 1⊗Ap

where a section of id ⊗A ηR is id ⊗A ϵ and a section of id ⊗A p is id ⊗A t.

Definition 2.3.9 Let M be a right A-comodule, then the normalized canonical resolu-

tion C(Γ ,M) of M is the Γ -split differential graded right Γ -comodule

0 C0 C1 · · ·d0 d1

where Cs = M⊗A Γ̄⊗s ⊗A ΓR, ds = (1⊗A ηR) ◦ (1⊗A p) and a section σs of ds is

(id ⊗A t) ◦ (id ⊗A ϵ). We denote

m|a1| · · · |as|a := m⊗A ā1 ⊗A · · · ⊗A ās ⊗A a

and we assign it homological degree s, internal degree t = |m|+
∑

|ai|+ |a|, bidegree

(s, t) and total degree t− s.

If N is a right Γ -comodule, the canonical complex C(N, Γ ,M) is defined to be

Cs,t(N, Γ ,M) := HomtΓ (N,Cs(Γ ,M))

Proposition 2.3.10 Exts,t
Γ (N,M) ∼= Hs,t(C(N, Γ ,M)).

Proof. See [BMMS86, Chapter IV, Proposition 1.2].

2.3.2 Power operations in Ext

Definition 2.3.11 Let C be the category whose objects are triples (N, Γ ,M) such that

1. (A, Γ) is a Hopf algebroid over k,

2. M is a commutative unital algebra in ComodΓ (let ηM : Γ →M be the unit),

3. N is a cocomutative unital coalgebra in ComodΓ (let ϵN : Γ → N be the counit).

and whose morphism (N, Γ ,M) → (N ′, Γ ′,M ′) are triples (f, λ,g) such that

1. λ : (A, Γ) → (A ′, Γ ′) is a morphism of Hopf algebroids,

2. f :M→M ′ is an λ-equivariant morphism of algebras preserving units,



power operations in classical homotopy theory and motivic homotopy theory 28

3. g : N ′ → N is a λ-equivariant morphism of coalgebras preserving counits.

Given a triple (N,A,M) ∈ C, let ϕ : Mn → M be the iterated product and

∆ : N → Nn be the iterated coproduct. Then by using the comparison theorem

2.3.6, we can extend ϕ :Mn →M to

ϕ̃ : C(Γ ,M)n → C(Γ ,M)

and this extension is unique up to homotopy. In this way, C(Γ ,M) is a homotopy

associative and commutative differential graded algebra in ComodΓ . Furthermore,

the following diagram

HomΓ (N,C(Γ ,M))n C(N, Γ ,M)n

HomΓ (Nn,C(Γ ,M)n)

HomΓ (N,C(Γ ,M)) C(N,A,M)

⊗

Hom(∆,ϕ̃)

also characterizes C(N, Γ ,M) as a homotopy associative and commutative differen-

tial graded algebra in ComodΓ .

Proposition 2.3.12 Let (N, Γ ,M) be a triple over Fp and π ⊂ Σp, then there is

a unique chain homotopy class of Fp[π]-equivariant maps Φ : W ⊗k C(Γ ,M) →
C(N, Γ ,M) such that (C(Γ ,M),Φ) is a (π, Fp)-pair.

Corollary 2.3.13 Let (N, Γ ,M) be a triple over Fp, then C(N, Γ ,M) has a (π, Fp)-pair

structure.
W ⊗ HomΓ (N,C(Γ ,M))p W ⊗C(N, Γ ,M)p

HomΓ (Np,W ⊗k C(Γ ,M)p)

HomΓ (N,C(Γ ,M)) C(N,A,M)

⊗

Hom(∆,Φ)

Construction 2.3.14 (Steenrod operations in Ext) Note that Exts,t
Γ (N,M) is the ho-

mology of C(N, Γ ,M) and here we let π = Cp. Let x ∈ Exts,t
Γ (N,M).

If p = 2, we define

Pi = Sqi(x) := θ∗(ei−t+s ⊗k x2), if i ⩾ t− s

If p is an odd prime, we define Pi(x) =(−1)iν(t− s)θ∗(e(2i−t+s)(p−1) ⊗k xp) 2i ⩾ t− s

βPi(x) =(−1)iν(t− s)θ∗(e(2i−t+s)(p−1)−1 ⊗k xp) 2i > t− s

where ν(n) = (−1)j(m!)ε for n = 2j+ ε and m = (p− 1)/2.
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Let (N, Γ ,M) be a triple over Zb such that N, Γ and M are torsion free. Let

N̄ = N⊗ Z/p, Γ̄ = Γ ⊗ Z/p and M̄ = M⊗ Z/p. Then (N̄, Γ̄ , M̄) is a triple over Fp.

The exact sequence

0 Z/p Z/p2 Z/p 0

induces the Bockstein operation

β : Exts,t
Γ̄

(N̄, M̄) → Exts+1,t
Γ̄

(N̄, M̄)

Theorem 2.3.15 The Steenrod operations in previous definition has the following

properties.

1. βεPi : Exts,t
Γ → Exts+(t−2i)(p−1)+ε,pt)

Γ where ε = 0 if p = 2.

2. When p = 2, Pi = 0 unless t− s ⩾ i ⩾ t. When p is an odd prime, Pi = 0

unless t− s ⩾ 2i ⩾ t, and βPi = 0 unless t− s+ 1 ⩾ 2i ⩾ t.

3. Pi(x) = xp if p = 2 and i = t− s or if p is an odd prime and 2i = t− s.

4. The Catan formulas hold:

Pn(xy) =
∑
i

Pi(x)Pn−i(y)

βPn(xy) =
∑
i

βPi(x)Pn−i(y) +
∑
i

(−1)|x|Pi(x)βPn−i(y)

5. The Adem relations hold: if p = 2 and 0 < a < 2b, then

SqaSqb =

[a/2]∑
j=0

(
b− 1− j

a− 2j

)
Sqa+b−jSqj

If p is an odd prime and a < pb, then

PaPb =

[a/p]∑
j=0

(
(p− 1)(b− j) − 1

a− pj

)
Pa+b−jPj

and if a ⩽ b, then

PaβPb =

[a/p]∑
j=0

(
(p− 1)(b− j) − 1

a− pj

)
βPa+b−jPj

+

[(a−1)/p]∑
j=0

(−1)a+j−1
(
(p− 1)(b− j) − 1

a− pj− 1

)
βPa+b−jPj

6. Let f : (N, Γ ,M) → (N ′, Γ ′,M ′) and g : (N ′, Γ ′,M ′) → (N ′′, Γ ′′,M ′′) be two

morphisms of triples such that the following sequence is exact

0 C(N, Γ ,M) C(N ′, Γ ′,M ′) C(N ′′, Γ ′′,M ′′) 0
C(f) C(g)
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and let δ : Exts,t
A (N,M) → Exts,t

A ′′(N
′′,M ′′) be the boundary map in the associ-

ated long exact sequence. Then δ ◦ Pi = Pi ◦ δ and δ ◦βPi = −βPi ◦ δ.

7. If (N, Γ ,M) is the mod-p reduction of torsion free triple over Z, then β ◦
Sqi+1 = iSqi and β ◦ Pi = βPi if p is an odd prime.

Proof. See [BMMS86, Chapter IV, Theorem 2.5].

2.3.3 The Adams spectral sequences

Construction 2.3.16 Given inverse sequences of CW-spectra

Y0 Y1 Y2 Y3 · · ·

where is is the inclusion of a subcomplex. (Any inverse sequence can be replaced

by an equivalent one of this form by taking CW approximation and mapping tele-

scopes.) Then we define is,r = is ◦ is+1 ◦ · · · ◦ is+r−1 : Ys+r → Ys and Ys,r =

Ys/Ys+r = Cis,r and let

Ys+r Ys

Ys,r

is,r

ps,r∂s,r

be a cofiber sequence with ∂s,r of degree -1.

Given a spectrum X, we obtain an exact couple

⊕
s,t[X, Ys]t−s

⊕
s,t[X, Ys]t−s

⊕
s,t[X, Ys,1]t−s

i∗

p∗∂∗

and the Es,t
r -term of the associated spectral sequence is

Es,t
r =

im([X, Ys,r]t−s → [X, Ys,1]t−s)

ker([X, Ys,1]t−s → [X, Ys−r+1,r]t−s)

Suppose E is a commutative ring spectrum with unit η : S → E and product

µ : E∧ E → E, we assume the induced map η∗ : π∗E → E∗E is flat. Then (π∗E,E∗E)

is a Hopf algebroid.

Proposition 2.3.17 With the assumption that η∗ is flat, the natural map

E∗E⊗π∗E E∗X→ π∗(E∧ E∧X)

is an isomorphism.

In particular, we have E∗(E ∧ E) ∼= E∗E ⊗π∗E E∗E. Now we let A = π∗E and

Γ = E∗E. The coproduct Ψ : Γ → Γ ⊗A Γ is

x ∈ [S,E∧ E]∗ 7→ η∧ x ∈ [S,E∧ E∧ E]∗
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For any spectrum X, E∗X is a right A-comodule in a similar way. (we just replace

the suitable E by X in previous formula.)

Definition 2.3.18 An Adams resolution of a spectrum X of is an inverse sequence

Y0 Y1 Y2 Y3 · · ·

such that for each s

1. Ys,1 is a wedge of (suspensions) of E or a retract of Xs ∧ E for some spectrum

Xs.

2. E∗Ys → E∗Ys,1 is an A-split monomorphism.

Remark 2.3.19 If we splice an Adams resolution of Y, we obtain an injective resolu-

tion of E∗Y

0 E∗Y E∗Y0,1 E∗ΣY1,1 E∗Σ2Y2,1 · · ·

E∗ΣY1 E∗Σ2Y2 · · ·

(1)

Construction 2.3.20 (Canonical Adams resolution) Let i : Ē → S be the fiber of

the unit η : S → E. Since a cofiber sequence in the stable homotopy category is a

fiber sequence, the cofiber of i is exactly the unit. We defined the canonical Adams

resolution inductively by setting Y0 = Y, Ys+1 = Ys ∧ Ē and is = id ∧ i : Ys ∧ Ē →
Ys ∧ S ∼= Ys. Note that the cofiber Cis is Ys ∧ E according to the definition.

The Adams spectral sequence for [X, Y]∗ with respect to E is the associated spectral

sequence of the exact couple obtained by applying [X,−]∗ to an Adams resolution

of Y. We denote it by E∗,∗
r (X, Y).

Remark 2.3.21 If we smash E on the cofiber sequence

S E ΣĒ
η

then we have another cofiber sequence

S ∧ E E∧ E Ē∧ E
η∧id

(2)

Note that η∧ id has a section µ : E∧ E→ E ∼= S∧ E. Then we have a π∗E-split exact

sequence by applying π∗ on the cofiber sequence (2)

0 π∗E E∗E E∗ΣĒ 0.
η∗

Therefore E∗ΣĒ is isomorphic to the cokernel of η : π∗E → E∗E, which means that

E∗ΣĒ play a role as Γ̄ in the normalized resolution resolution in Definition 2.3.9.

Lemma 2.3.22 The spliced resolution in the form of (1) obtained from the canonical

Adams resolution is the normalized canonical resolution C(E∗E,E∗Y) in Definition

2.3.9.
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Condition 2.3.23 For any Y and π∗E-projective E∗X, we have the following isomor-

phisms.

[X, Y ∧ E]∗ ∼= HomE∗E(E∗X,E∗(Y ∧ E)) ∼= Homπ∗E(E∗X,E∗Y)

Remark 2.3.24 Given Condition 2.3.23, for any Adams resolution in Definition

2.3.18, we have [X, Ys,1] ∼= HomE∗E(E∗E,E∗Ys,1). Therefore, the E2-term in the

associated Adams spectral sequence is ExtE∗E(E∗X,E∗Y).

Suppose the Condition 2.3.23 is satisfied, then we have the following lemmas.

Lemma 2.3.25 If E∗X is π∗E-projective, then

Es,t
1 (X, Y) = Cs,t(E∗X,E∗E,E∗Y)

Proof. See [BMMS86, Chapter IV, Lemma 3.7].

Corollary 2.3.26 If E∗X is πE-projective, then

Es,t
2 (X, Y) = Exts,t

E∗E
(E∗X,E∗Y)

Proposition 2.3.27 The Condition 2.3.23 holds for E = S,HZ/p,MO,MU,MSp,K,KO,

and BP.

Proof. See [Ada74, Proposition 13.4].

Theorem 2.3.28 (Adams) Given a commutative ring spectrum E and two spectra

X,Z satisfying the condition in [Ada74, Theorem 15.1], the Adams spectral sequence

Es,t
r (X,Z) converges to [X,Z]E∗ , where [X,Z]E∗ is the graded group of homotopy

classes in the E-localized stable homotopy category.

Proof. See [Ada74, Part III, Chapter 15].

Remark 2.3.29 Adams’s conditions for the convergence of Es,t
r (X,Z) ⇒ [X,Z]E∗ are

1. Z is bounded below,

2. E is connective and µ∗ : π0(E)⊗ π0(E) → π0(E) is an isomorphism,

3. if R ⊂ Q is maximal such that the natural ring homomorphism Z → π0(E)

extends to R→ π0E, then HrE is finitely generated as an R-module for all r;

Theorem 2.3.30 There is a pairing of Adams spectral sequences

E∗,∗
r (X, Y)⊗ E∗,∗

r (X ′, Y ′) → E∗,∗
r (X∧X ′, Y ∧ Y ′)

converging to the smash product

[X, Y]E∗ ⊗ [X ′, Y ′]E∗ → [X∧X ′, Y ∧ Y ′]E∗ .

If E∗X and E∗X ′ are π∗E-projective, then the pairing on the E2-pages is the exter-

nal product

Ext(E∗X,E∗Y)⊗ Ext(E∗X ′,E∗Y ′) → Ext(E∗X⊗ E∗X ′,E∗Y ⊗ E∗Y ′)
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composed with the homomorphisms

E∗(X∧X ′)
∼−→ E∗X⊗ E∗X ′

E∗Y ⊗ E∗Y ′ → E∗(Y ∧ Y
′)

(Here the Kunneth homomorphism E∗X⊗ E∗X ′ → E∗(X∧ X ′) is an isomorphism

because E∗X and E∗X ′ are π∗E-projective.)

Corollary 2.3.31

1. {E∗,∗
r (S, S)} is a spectral sequence of bigraded commutative algebras.

2. E∗,∗
r (X, Y) is a differential E∗,∗

r (S, S)-module.

3. If X is a suspension spectral and Y is a commutative ring spectrum, then {E
/∗,∗
r }

is a spectral sequence of bigraded commutative {E∗,∗
r (S, S)}-algebras whose

product converges to the smash product on [X, Y] defined by the diagonal

map ∆ : X→ X∧X and the product µ : Y ∧ Y → Y.

2.3.4 Extended powers in the Adams spectral sequence

Suppose Y is an H∞-ring spectrum, we let

ξ : DrY → Y

be its extended power.

Let π ⊂ Σr and let Eπn be the n-skeleton of a contractible π-free CW-complex Eπ.

We assume W0 = π. Then we let DiπY := ((Eπi)+ ∧ Yr)/π, which is a subcomplex

of DπY. This construction induces a filtration of DπY.

D0πY ⊂ D1πY ⊂ D2πY ⊂ · · · ⊂ DπY

Now we let E be a ring spectrum satisfying Condition 2.3.23 and (π∗E,E∗E) forms

a Hopf algebroid. Let

Y ≃ Y0 Y1 Y2 . . .

be an Adams resolution with respect to E. Then we let

Fs = (Ys)
r

Z = DπY0 = ((Eπ)+ ∧ Yr0)/π

Zi,s = ((Eπi)+ ∧ Fs)/π

Lemma 2.3.32 Let Bi = Eπi/π.

1. Zi−1,s and Zi,s+1 are subcomplex of Zi,s.

2. Zi,s
Zi−1,s

≃ Bi
Bi−1

∧ Fs.

3. Zi,s
Zi−1,s∪Zi,s+1 ≃ Bi

Bi−1
∧ Fs
Fs+1
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4. The following diagram commutes.

Zi,s
Zi−1,s∪Zi,s+1

Bi
Bi−1

∧ Fs
Fs−1

Zi−1,s
Zi−2,s∪Zi−1,s+1

∨
Zi,s+1

Zi−1,s+1∪Zi,s+2
Bi−1
Bi−2

∧ Fs
Fs+1

∧
Bi
Bi−1

∧
Fs+1
Fs+2

∂

∼

∂∧id∨id∧∂

∼

Proof. See [BMMS86, Chapter IV, Lemma 5.1].

Theorem 2.3.33 If E∗Ys is π∗E-projective for each s, then there exists maps ξi,s :

Zi,s → Ys−i such that the following diagrams commute

DπY Zi,s

Y Ys−i

ξ ξi,s

Zi,s−1 Zi,s Zi−1,s

Ys−i−1 Ys−i Ys−i+1

ξi,s−1 ξi,s ξi−1,s

Proof. See [BMMS86, Chapter IV, Theorem 5.2].

Remark 2.3.34 The mix {Zi,s} of the skeleton filtration on Eπ and the Adams res-

olution of Y together with {ξi,s} is the “resolution" of ξ : DπY → Y. We will see

how {ξi,s} “converge" to ξ along a generalized Adams spectral sequence later (see

Theorem 2.3.38).

Let Wk = πk(Eπk/Eπk−1) and d : Wk → Wk−1 be the map induced by the

geometric boundary map. Then we have a Z[π]-resolution of Z with W0 = Z[π].

Let Cs,t = Et−sYs,1. Then

0 C0 C1 C2 · · ·

is the resolution of E∗Y associated to the Adams resolution. (Here the index i of Ci
is the total degree of elements in

⊕
s,t Cs,t.) Note that Cs,t coincides with Es,t

1 (S, Y),

and Cs,t = Cs,t(π∗E,E∗E,E∗Y).

Note that if each E∗Ys is π∗E-projective, the Kunneth homomorphism is an iso-

morphism from Cr to the resolution associated to {Fs}. Let hE : π∗ → E∗ be the

Hurewicz homomorphism, κ the Kunneth homomorphism.

Corollary 2.3.35 If π0E = Z/p and the chain map Φ ′ : W ⊗k Cr → C is defined to

make the following diagram commute

Wk ⊗ (
⊗
i Csi,ti) Ek(Eπk/Eπk−1)⊗ (

⊗
i Eti−siYsi,1)

Et−s+k(Eπk/Eπk−1 ∧ Fs,1)

Cs−k,t Et−s+kYs−k,1

Φ ′

hE⊗id

κ

ξk,s
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where t = t1 + · · ·+ tr and s = s1 + · · ·+ sr, then Φ ′ is chain homotopic to Φ in

Proposition 2.3.12 (Here we let Γ = E∗E, M = E∗Y, and N = π∗E).

Corollary 2.3.36 Suppose X is a spectrum with a coproduct ∆ : X→ X∧X and E∗X

is π∗E-projective. Let e ∈Wk and fj ∈ [X, Ysj,1]tj−sj , then Φ∗(e⊗ f1∗ ⊗ · · · ⊗ fr∗) is

represented by the composite

Σt−s+kX Ys−k,1

Σt−s+kXr Σk(
∧
j Σ
tj−sjX) Eπk/Eπk−1 ∧ (

∧
j Ysj,1)

Σt−s+k∆r

e∧(
∧
j fj)

ξk,s

Remark 2.3.37 With the extended powers internalized by H∞-structures, the total

power operations can be write down explicitly. Furthermore, we can use them to

study differentials of the form drβ
εPix and related homotopy operations.

2.3.5 How power operations detect homotopy operations

Theorem 2.3.38 Suppose E is a commutative ring spectrum such that (π∗E,E∗E) is

a Hopf algebroid which satisfies Condition 2.3.23. Let

Z := (Z = Z0 Z1 Z2 · · · )f0 f1 f2

be an inverse sequence such that E∗Zi is π∗E-projective and E∗fi is a π∗E-split

monomorphism for each i. Then

1. there exists a spectral sequence E∗,∗
∗ (X,Z), natural with respect to maps of

such sequences, such that

Es,t
2 (X,Z) =

⊕
i

Es−i,t−i2 (X,Cfi)

where E∗,∗
∗ (X,Cfi) is the Adams spectral sequence converging to [X,Cfi] (re-

call Theorem 2.3.28);

2. if E∗Y ′ is π∗E-projective and we let

Z∧ Y ′ := (Z∧ Y ′ = Z0 ∧ Y
′ Z1 ∧ Y

′ Z2 ∧ Y
′ · · · )f0∧id f1∧id f2∧id

there is a pairing

E∗,∗
r (X,Z)⊗ E∗,∗

r (X ′, Y ′) E∗,∗
r (X∧X ′,Z∧ Y ′)

[X,Z]E∗ ⊗ [X ′, Y ′]E∗ [X∧X ′,Z∧ Y ′]E∗
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3. if

Z0 Z1 · · ·

Y Y0 Y1 · · ·

c0 c1

f0 f1

i0 i1

is an inverse-sequence morphism from Z to an Adams resolution of Y, then

there is a homomorphism c of spectral sequences

E∗,∗
r (X,Z) [X,Z]E∗

E∗,∗
r (X, Y) [X, Y]E∗

c c0∗

which maps the pairing in (2) to the smash product pairing

E∗,∗
r (X,Z)⊗ E∗,∗

r (X ′, Y ′) E∗,∗
r (X∧X ′,Z∧ Y ′)

E∗,∗
r (X, Y)⊗ E∗,∗

r (X ′, Y ′) E∗,∗
r (X∧X ′, Y ∧ Y ′)

c⊗id c

4. the spectral sequence E∗,∗
r (X,Z) converges to [X,Z]E∗ if E and Z satisfies the

Adams condition in Remark 2.3.29 and E∗(MicZ) = 0, where MicZ is the

microscope, or homotopy limit of the inverse sequence Z.

Proof. See [BMMS86, Chapter IV, Section 6].

Let x ∈ πn(Y) be detected by x̄ ∈ Es,n+s
2 (S, Y) (this means that the element

x : Sn → Y is detected by x̄ : Sn → Ys and the later one is an element in some

E∗-homology group), the Adams spectral sequence with respect to a commutative

ring spectrum E satisfying the condition in Theorem 2.3.38. Let Ξ be the sequence

Ξ = (Dpsπ Sn D
ps−1
π Sn D

ps−2
π Sn · · · D1πSn Snp)

where π = Cp and DiπSn = ((Wi)+ ∧ Snp)/π is the extended power of Sn based

on the i-skeleton Wi of the standard free π-CW-complex, i.e. the universal cover

of the mod-p lens space where W2i−1 = S2i−1. By Theorem 2.3.33, if E∗Yj is π∗E-

projective, then we have a morphism from Ξ to the canonical Adams resolution of

Y.
D
ps
π Sn D

ps−1
π Sn · · · D1πSn Snp

D
ps
π Ys D

ps−1
π Ys · · · D1πYs Y

p
s

Y0 Y1 · · · Yps−1 Yps

Dπx̄ Dπx̄ Dπx̄ Dπx̄

ξps,ps ξps−1,ps ξ1,ξ ξ0,ps

By Theorem 2.3.38 3, we have a homomorphism

P(x) : E∗,∗
r (S,Ξ) → E∗,∗

r (S, Y)
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of spectral sequences (here we assume the domain spectral sequences exists). Simi-

larly, we have compatible maps

D1πSn ∧ Y → Yps−i

and a homomorphism

P(x) : E∗,∗
r (S,Ξ∧ Y) → E∗,∗

r (S, Y)

Proposition 2.3.39 If E∗Di−1π Sn → E∗DiπSn is a π∗E-split monomorphism for each

i ⩾ ps, then the spectral sequence E∗,∗
r (S,Ξ) exists and E2(S,Ξ) is free over E2(S, S)

on generators ei ∈ E
ps−i,ps+pn
2 (Dpsπ Sn,Ξ). Similarly, E2(Sn,Ξ ∧ Y) is free over

E2(S, Y) on the image of the ei under the map induced by the unit S → Y.

Proof. See [BMMS86, Chapter IV, Proposition 7.5].

Remark 2.3.40 We may take ei as the np+ i-cell ofDπSn (the smash product among

p copyies of Sn and the unique i-cell of W).

Theorem 2.3.41 Suppose the hypothesis of Proposition 2.3.39 holds and E∗Y is π∗E-

projective. Then P(x) sends ei to Φ∗(ei ⊗ x̄p).

Remark 2.3.42 If p = 2, then P(x) sends ei to Sqi+n(x̄). If p is an odd prime, then

P(x) sends (−1)ν(n)ei to βεPjx̄ if i = (2j− n)(p− 1) − ε. P(x) sends elements to 0

if i is not of this form.

Definition 2.3.43 (Homotopy operations) Suppose Y is anH∞-ring spectrum. Given

α ∈ Ym(Dj1Sn1 ∧ · · ·∧DjkSnk), the associated homotopy operation

α∗ : πn1Y × · · · × πnkY → πm(Y)

is defined by sending f1 × · · · × fk ∈ πn1Y × · · · × πnkY to the composite

Sm Dj1Sn1 ∧ · · ·∧DjkSnk ∧ Y Dj1Y ∧ · · ·∧DjkY ∧ Y Y
α Dj1f1∧···∧Djkfk∧id ξ

Now we show how Steenrod operations on the E2-page detect homotopy opera-

tions. If we assume

E∗,∗
r (S,Ξ) ⇒ π∗D

ps
π Sn

then any α ∈ π∗Dpsπ Sn can be detected by an element
∑
akek ∈ E2(S,Ξ), where

ak ∈ E2(S, S). Applying P(x), we see that α∗(x) is detected by
∑
akΦ∗(ek ⊗ x̄p) ∈

E2(S, S). Similarly, if E∗,∗
r (S,Ξ ∧ Y) converges to Y∗D

ps
π S

n, any α ∈ Y∗D
ps
π Sn is

detected by
∑
akek ∈ E2(S,Ξ∧ Y), where ak ∈ E2(S, Y), then α∗(x) is detected by

P(x).

2.4 Motivic homotopy theory

In this subsection, we will give a brief introduction to motivic homotopy theory.

We mainly follow Morel and Voevodsky’s method [MV99]. Roughly speaking, this

method has two stages as follows.
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1. Consider the injective model structures on the category of simplicial sheaves

(or sheaves of spectra) over the Nisnevich site. In this stage, we set up the

foundation of homotopy theory by using simplicial homotopy theory and ad-

dress the related descent problem by choosing the Nisnevich topology. The

resulting homotopy category in this stage is called the simplicial homotopy

category of schemes.

2. Based on the simplicial homotopy category, we invert all the natural projection

X× A1 → X by Bousfield localization, which exhibits A1 as an interval. The

resulting homotopy category is the desired motivic homotopy category.

However, an issue in this construction is that not all objects are fibrant. There-

fore, we need a functorial fibrant replacement. The construction of such functors is

sketched in Subsubsection 2.4.2. Actually, the construction of a fibrant resolution

functor is very complicated, on which Morel and Voevodsky spent dozens of pages

in [MV99]. Furthermore, we discuss other models for motivic homotopy theory in

Subsubsection 2.4.6. In particular, the fibrant issue will be more manageable, if we

use projective model structure on the category of simplicial presheaves.

2.4.1 The unstable motivic homotopy category

Let S be a regular separated Noetherian scheme of finite Krull dimension. Let Sm/S

be the category of smooth S-schemes of finite type. Let sPre(Sm/S) be the category

of simplicial presheaves over Sm/S, which acts as a platform to build homotopy

theory of schemes.

Example 2.4.1 By Yoneda embedding theorem, X ∈ Sm/S can be embedding in

sPre(Sm/S) as the presheaf hX : Z 7→ HomSm/S(Y,X), where HomSm/S(Y,X) is a

discrete simplicial set.

Let U ↪→ X be an open embedding, then X/U is defined to be the quotient

presheaf hX/hZ.

Example 2.4.2 Given a simplicial set Y, then Y can be taken as a constant presheaf

valued at Y on Sm/S.

The first modification on sPre(Sm/S) is about Grothendieck topologies. We need

to choose a suitable topology T such that it satisfies the following properties.

• Property A: For any X ∈ Sm/S, the cohomological dimension with respect to

T of X is the same as the Krull dimension of X.

• Property B: If i : Z ↪→ X is a closed embedding, then i is T -locally of the form

AdimZ
S ↪→ AdimX

S . (This properties implies cohomology purity.)

• Property C: For any X ∈ Sm/S, K(X) should satisfy T -descent.

Now we recall some candidates for such properties.

Example 2.4.3 Let X be an object in Sm/S.

An Zariski covering on X is a family of open embedding {pi : Ui → X} such that

∪fi(Ui) = X. The Grothendieck topology generated by Zariski coverings is exactly

the Zariski topology.
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An étale covering on X is a family of finite étale morphisms {pi : Ui → X} such that

∪fi(Ui) = X. The Grothendieck topology generated by étale coverings is called the

étale topology.

However, neither Zariski topology or étale topology satisfies all of these there

properties.

Properties Zariski topology Étale topology
Property A Yes No
Property B No Yes
Property C Yes No

Definition 2.4.4 A Nisnevich covering on X is an étale covering {pi : Ui → X} such

that for any x ∈ X, there exists an pi : Ui → X and y ∈ Ui such that pi(y) = x

and pi∗ : κ(y) → κ(x) is an isomorphism, where κ(x) is the residue field of x ∈ X.

The Grothendieck topology generated by Nisnevich covering is called the Nisnevich

topology.

Proposition 2.4.5 The Nisnevich topology satisfies all of the mentioned properties.

Remark 2.4.6 The Nisnevich topology is finer than the Zariski topology and coarser

than the étale topology.

Proposition 2.4.7 The Nisnevich topology is generated by the squares of the follow-

ing form.
U×X V V

U X

p

i

where p is an étale morphism and i an open embedding such that p−1(X− i(U))
p−→

X− i(U) is an isomorphism on the reduced locus. Such diagram is called elementary

distinguished squares.

Corollary 2.4.8 A presheaf F on Sm/S is a Nisnevich sheaf if it send any elementary

distinguished square to a pull-back diagram

F(X) F(U)

F(V) F(U×X V)

Proposition 2.4.9 Given any X ∈ Sm/S and x ∈ X,

1. the stalk at x with respect to Zariski neighbourhood is OX,x,

2. the stalk at x with respect to Nisnevich neighbourhood is OhX,x, the henseliza-

tion of OX,x,

3. the stalk at x with respect to Nisnevich neighbourhood is OshX,x, the strict

henselization of OX,x.

Next we model homotopy theory on Nisnevich sheaves.

Construction 2.4.10 Let sShvNis(S) be the category of Nisnevich simplicial sheaves

over Sm/S. Then there exists a simplicial closed model category with
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1. f : X → Y is a weak equivalence if f is a stalkwise weak equivalence, i.e. for

any U ∈ Sm/S and any u ∈ U,

f∗ : X(Spec(OU,u)) → Y(Spec(OU,u))

is a weak equivalence between simplicial sets,

2. f is a cofibration if f is a monomorphism,

3. f is a fibration if it has the right lifting property with respect to any acyclic

cofibration. Such fibrations are called global fibrations.

The existence of such simplicial model category can be found in [MV99, Theorem

1.4]. Let Hs(S) be the resulting homotopy category. We denote this model category

by sShvNis(Sm/S)Joyal, because the original idea of this construction is given by

Joyal [Joy84]. We denote

[X,Y]s := HomHs(S)(X,Y)

Given X,Y ∈ sShvNis(S), the mapping simplicial set S(X → Y) is defined to be

S(X,Y)n := HomsShvNis(S)(X×∆n → Y)

Suppose f,g : X → Y are maps in S(X,Y)0, a simplicial homotopy from f to g is an 1-

simplex in S(X,Y)1 with boundary {f,g}. f : X → Y is a simplicial homotopy equivalence

if there exists q : Y → X such that q ◦ f and f ◦ q are simplicially homotopic idX and

idY respectively.

The internal function sheaf Hom(X,Y) is defined to be right adjoint Y 7→ Hom(X,Y)

of the functor

Z 7→ Z×X

Let sShvNis(Sm/S)• be the pointed model category obtained from sShvNis(Sm/S)Joyal
and Hs,•(S) be the resulting pointed homotopy category. We also denote

[X,Y]s,• := HomHs,•(S)(X,Y)

Remark 2.4.11 Note that ∆1 is a cylinder object in this model category. Then if X

and Y are cofibrant and fibrant, we have

π0S(X,Y) ∼= [X,Y]s

Definition 2.4.12 Given a simplicial presheaf X, let πnX =
⊔
x∈X0 πn(X, x) be its

nth-homotopy presheaf for n > 0 and let π̃nX be the associated sheaf (with respect

to the Nisnevich topology) of πn(X). Similarly, π̃0X is the sheafification of π0X with

respect to the Nisnevich topology. f : X → Y is a local weak equivalence if

1. the map π̃0(X) → π̃0(Y) is an bijection of sheaves.
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2. the diagram of sheaf morphisms

π̃nX π̃nY

X̃0 Ỹ0

is a pullback for all n ⩾ 1.

Remark 2.4.13 In short, a morphism is a local weak equivalence if and only if

it induces an isomorphism in all possible sheaves of homotopy group at all local

choices of base points.

Lemma 2.4.14 A morphism between simplicial sheaves is a local weak equivalence

if and only if it is a stalkwise weak equivalence.

Proof. See [MV99, Section 3, Lemma 1.11].

Remark 2.4.15 Note that f : X → Y is a sectionwise weak equivalence if for any

U ∈ Sm/S, f : X(U) → Y(U) is a weak equivalence. A sectionwise equivalence is a

stalkwise equivalence. However, a stalkwise equivalence may not be a sectionwise

weak equivalence. That is because πn(X) may not be a sheaf.

Proposition 2.4.16 Given a global fibration f : X → Y, the induced map

X(U) → Y(U)

is a Kan fibration for any U ∈ Sm/S. In particular, if X is fibrant, then X(U) is a Kan

complex.

Proof. See [Jar07, P10].

Remark 2.4.17 The converse proposition is false.

Proposition 2.4.18 A stalkwise weak equivalence f : X → Y between fibrant sim-

plicial sheaves is a simplicial homotopy equivalence (an isomorphism in π0S(X,Y)).

Moreover, f is a sectionwise weak equivalence.

Proof. See [MV99, Section 2, Lemma 1.10].

Corollary 2.4.19 Let (X, x) be a pointed fibrant simplicial sheaf. Then for any U ∈
Sm/S and any non-negative integer n, we have

πn(X(U)) ∼= [Sn ∧U+, (X, x)]s,•

Remark 2.4.20 Roughly speaking, the slogan is that fibrant objects are representable

in the corresponding homotopy category.

Remark 2.4.21 There exists a proper closed simplicial model category on sPre((Sm/S)Nis)

such that

1. f : X → Y is a weak equivalence if and only if f is a local weak equivalence.

2. f is a cofibration if and only if f is a monomorphism.



power operations in classical homotopy theory and motivic homotopy theory 42

3. f is a fibration if it has the right lifting property with respect to acyclic cofibra-

tion in previous sense. Such fibrations are called global fibrations.

The proof can be found in [Jar87] and we denote this model category by sPre((Sm/S)Nis)Jardine.

Let i : sPre((Sm/S)Nis) → sShvNis(Sm/S) be the inclusion of the full subcategory.

The model structure on sShvNis(Sm/S) inherited from sPre((Sm/S)Nis)Jardine is

exactly sShvNis(Sm/S)Joyal. Furthermore, the inclusion i : sShvNis(Sm/S) ↪→
sPre((Sm/S)Nis)Jardine and the sheafification functor LNis : sPre((Sm/S)Nis)Jardine →
sShvNis(Sm/S)Joyal form a pair of Quillen equivalences [Jar07, Theorem 5]. There-

fore, we are free to use the shefification functor without worrying about the issues

about model categories.

Remark 2.4.22 Since the right adjoint functor LNis preserves fibrations, the char-

acterization of fibrant object in sPre((Sm/S)Nis)Jardine (see [DHI04, Theorem 1.1])

is the same as the one in sShvNis(Sm/S)Joyal.

The next modification on simplicial presheaves is to localize A1. Intuitively

speaking, we need to make A1 contractible and play a role as an interval to parametrize

“homotopies".

Construction 2.4.23 X ∈ sPre(Sm/S) is A1-local, if the projection Y × A1 → Y

induces a bijection HomHs(S)(Y,X) → HomHs(S)(Y× A1,X) for any Y ∈ Sm/S.

A morphism Y → Z is an A1-weak equivalence if, for any A1-local, simplicially

fibrant sheaf X, the induced map S(Z,X) → S(Y,X) is a weak equivalence be-

tween simplicial sets. Note that there exists a proper model category structure

on sShvNis(Sm/S) such that

1. f : Y → X is a weak equivalence if f is an A1-weak equivalence,

2. f is a cofibration if f is a monomorphism,

3. f is fibration if it has the right lifting property with respect to any acyclic

A1-cofibration. Such fibrations are called A1-fibrations.

The existence is proved in [MV99, Theorem 2.5, Theorem 2.7] and we denote this

model category by sShvNis(Sm/S)A1 and the resulting homotopy category is the

motivic homotopy category (or say A1-homotopy category) denoted by H(S). The asso-

ciated pointed homotopy category is denoted by H•(S). We denote

[X,Y]A
1
:= HomH(S)(X,Y)

[X,Y]A
1

• := HomH•(S)(X,Y)

Let Hs,A1(S) ⊂ Hs(S) be the full subcategory of A1-local simplicial sheaves. The

inclusion functor Hs,A1(S) ↪→ Hs(S) has a left adjoint LA1 as A1-localization. Then

we have

LA1Hs(S) ≃ H(S)

Proposition 2.4.24 Let X be a fibrant simplicial sheaf in sShvNis(Sm/S)Joyal. X is

A1-local if and only if X is A1-local.

Proof. See [MV99, Section 2, Proposition 2.28].
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Definition 2.4.25 Let f,g : X → Y be morphisms between simplicial sheaves. Let

i0, i1 : S → A1
S be the embeddings corresponding to Z[x]

x 7→0−−−→ Z and Z[x]
x 7→1−−−→

Z. A naive A1-homotopy from f to g is a morphism H : X × A1 → Y such that

H ◦ i0 = f and H ◦ i1 = g. Two morphisms are A1-homotopic if they are connected

by a sequence of naive A1-homotopies. A morphism f : X → Y is called a strict

A1-homotopy equivalence if there is a morphism g : Y → X such that f ◦ g and g ◦ f
are A1-homotopic to idX and idY respectively.

Proposition 2.4.26 Any strict A1-homotopy equivalence is an A1-weak equiva-

lence.

Proof. See [MV99, Section 2, Lemma 3.6].

Proposition 2.4.27 Suppose (X, x) is an A1-invariant and fibrant pointed simplicial

sheaf. Then for any U ∈ Sm/S and any non-negative integer n, we have

πn(X(U)) = [Sn ∧U+, (LNisX, x))]A
1

•

2.4.2 Fibrant resolution functors

Since every object in sShvNis(S) is cofibrant, it is desired to characterize fibrant ob-

jects. Furthermore, we have shown that the homotopy sheaf of a fibrant simplicial

sheaf is representable in the corresponding homotopy category. In this subsub-

section, we will construct fibrant resolution functors to replace objects by fibrant

objects functorially. First, we define and construct fibrant resolution functors in

sShvNis(Sm/S)Joyal. Secondly, we proceed the same procedure in sShvNis(Sm/S)A1

in terms of previously resulting functors.

Definition 2.4.28 A fibrant resolution functor on sShvNis(S) is a pair (Ex, θ) consist-

ing of a functor Ex : sShvNis(Sm/S) → sShvNis(Sm/S) and a natural transforma-

tion θ : id → Ex such that for any X, the object Ex(X) is fibrant and the morphism

X → ExX is a trivial cofibration.

Theorem 2.4.29 There exists a resolution functor on sShvNis(Sm/S).

Proof. A construction is given by the composition of Godement resolution, Nis-

nevich sheafification and Ex∞, where Ex∞ is a fibrant resolution in Joyal’s model

category of simplicial sets. See [MV99, Section 2, Theorem 1.66].

Definition 2.4.30 A simplicial presheaf X is A1-invariant if X(U) → X(U× A1) is a

weak equivalence of simplicial sets for any U ∈ Sm/S.

Proposition 2.4.31 Let X be a fibrant simplicial sheaf. Then X is A1-invariant if and

only if X is A1-local.

Proof. See [MV99, Section 2, Proposition 3.19].

Construction 2.4.32 Given a commutative ring R, we can construct a cosimplicial

scheme by setting

∆nR := SpecR[x0, · · · , xn]/(x0 + · · ·+ xn = 1)



power operations in classical homotopy theory and motivic homotopy theory 44

For the scheme S, we define a cosimplicial object ∆∗
S in Sm/S by setting

∆nS := S×Z ∆
n
S

Given a simplicial presheaf X, we define a simplicial presheaf SingA1

∗ X to be

SingA1

n X := Hom(∆nS ,Xn)

In other words, SingA1

∗ X is the diagonal of the bisimplicial presheaf X(−×∆∗
S).

Proposition 2.4.33 The SingA1 -functor has the following properties.

1. Let f,g : X → Y be two morphisms and H be a naive A1-homotopy from f to

g. Then there exists a simplicial homotopy from SingA1

∗ X → SingA1

∗ Y.

2. For any simplicial sheaf X, the canonical X 7→ SingA1

∗ X is an A1-weak equiv-

alence.

3. SingA1

∗ preserves A1-fibrations.

4. For any simplicial sheaf X, SingA1

∗ X is A1-invariant.

Proof. See [MV99, P89].

Remark 2.4.34 The first assertion in Proposition 2.4.33 demonstrates that the SingA1

∗ -

functor converts A1-homotopies into simplicial homotopies. In this way, A1-homotopies

are encoded by simplicial homotopies via SingA1

∗ , and the homotopy theory with

respect to simplicial homotopies is easier to manipulate. This is the magic of the

SingA1

∗ -functor.

Remark 2.4.35 It is not true that for any simplicial sheaf F, SingA1

∗ F is A1-local.

Recall that if F is simplicially fibrant, SingA1

∗ F is A-local according to 2.4.31. Based

this observation, the issue happens when F is not global fibrant. A concrete example

can be found in [MV99, Section 3, Example 2.7]. Therefore, we need to modify

SingA1

∗ to address the simplicially fibrant issue.

Construction 2.4.36 (A1-fibrant resolution functor) Let (Ex, θ) be a fibrant resolu-

tion functor in the sense of Definition 2.4.28. Then we define

ExA1 = Ex ◦ (Ex ◦ SingA1

∗ )N ◦ Ex

which is called an A1-fibrant resolution functor.

Proposition 2.4.37 For any simplicial sheaf X, ExA1(X) is A1-fibrant.

Proof. See [MV99, Section 3, Lemma 2.6].

Therefore, we may take ExA1 as an explicit presentation of LA1 .

Definition 2.4.38 For any pointed simplicial sheaf (X, x) and any i ⩾ 0, we define a

presheaf of ith A1-homotopy groups

πA1

i (X, x)(U) = πi(ExA1(X)(U), x)

Recall that π̃A1

i (X, x) is the sheaf associated to the presheaf πA1

i (X, x). X is said to

be A1-connected if π̃A1

i (X, x) is the constant sheaf valued at a single point.
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Theorem 2.4.39 Let f : (X, x) → (Y,y) be a morphism of A1-connected pointed

simplicial sheaves. Then the following assertions are equivalent:

1. f is an A1-weak equivalence;

2. for any i ⩾ 0, the morphism of the presheaves of A1-homotopy groups

πA1

i (X, x) → πA1

i (Y,y) is an isomorphism;

3. for any i ⩾ 0, the morphism of the sheaves of A1-homotopy groups π̃A1

i (X, x) →
π̃A1

i (Y,y) is an isomorphism.

This is an A1-version of Whitehead theorem.

Definition 2.4.40 A motivic space is an A1-fibrant object in sShvA1(Sm/S)A1 .

Remark 2.4.41 Since we have an A1-fibrant resolution functor ExA1 , we can iden-

tify each scheme in Sm/S as a motivic space via ExA1 .

2.4.3 Basic in the unstable motivic homotopy category

Given (X, x), (Y,y) ∈ H•(S), the wedge (X, x)∨ (Y,y) and the smash product (X, x)∧

(Y,y) are defined sectionwisely. Let S0 ∈ H(S) be the constant sheaf valued at S0.

Then (H•(S),∧,S0) forms a symmetric monoidal category. Note that the smash

product is characterized by

X+ ∧ Y+ = (X×S Y)+

for X, Y ∈ Sm/S.

Consider the following convention in sShvNis(Sm/S)•:

• the simplicial circle S1s : the constant simplicial sheaf valued at the pointed

simplicial circle ∆1/∂∆1;

• the Tate circle S1t : the sheaf represented by A1 − {0} pointed by 1;

• the Tate sphere T : the quotient sheaf A1/(A1 − {0}).

We introduce the following notations:

• Sns = (S1s)
∧n;

• Snt = (S1t )
∧n;

• Tn = T∧n;

• Sp,q = Sp−qs ∧ S
q
t .

Lemma 2.4.42 There is a canonical isomorphism in H•(S)

S1s ∧ S
1
t
∼= T

We define three kinds of suspensions as follows.

1. Σs(X, x) = S1s ∧ (X, x);

2. Σt(X, x) = S1t ∧ (X, x);
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3. ΣT (X, x) = T ∧ (X, x).

Definition 2.4.43 Let X ∈ Sm/S and E a vector bundle over X. The Thom space of

E is the pointed sheaf

Th(E) = Th(E/X) = E/(E− z(X))

where z : X→ E is the zero section of E.

Proposition 2.4.44 For any vector bundle E over X, let P(E) → X be the correspond-

ing projective bundle over X and OnX be the trivial bundle of dimension n. Then we

have

1. Th(E1 × E2/X1 ×X2) = Th(E1/X1)∧ Th(E2/X2).

2. Th(OnX) = Σ
n
TX+.

3. Let P(E) ↪→ P(E⊕OX) be the closed embedding at infinity. Then the canon-

ical morphism of pointed sheaves P(E⊕ OX)/P(E) → Th(E) is an A1-weak

equivalence.

Corollary 2.4.45 Pn/Pn−1 ∼= Tn in H•(S). In particular, one has (P1, ∗) ∼= T .

Proposition 2.4.46 There is a conical isomorphism in H•(S)

An − {(0, · · · , 0)} ∼= (S1s)
n−1 ∧ (S1t )

n = S2n−1,n.

Let f : S1 → S2 be a morphism between schemes, then we have a pair of adjoint

functors

f∗ : H•(S2) H•(S1) :f∗

such that f∗ is obtained by left Kan extension of the functor f∗ : Sm/S2 → Sm/S1,

X+ 7→ X××S2S1 and taking the total derived functors [MV99].

Let f : S1 → S2 be a smooth morphism, then we have a pair of adjoint functors

f# : H•(S2) H•(S1) :f
∗

Theorem 2.4.47 (Localization theorem) Let i : Z → S be a closed embedding and

j : U → S be the complimentary open embedding. Then for any simplicial sheaf X,

the square
j#j

∗X X

U i∗i∗X

is homotopy cocartesian in H(S).

Proof. See [MV99, Section 3, Theorem 2.21].

Remark 2.4.48 The proof of this theorem relies on the choice of Nisnevich topology

and the choice of A1 as an interval object. Furthermore, the proof in [MV99] also

relies on the condition of smoothness.
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Theorem 2.4.49 (Homotopy purity) Let i : Z→ X be a closed embedding of smooth

schemes over S. Let NX/Z be the normal vector bundle to i. Then there is a canoni-

cal isomorphism in H•(S)

X/(X− i(Z)) ∼= Th(NX/Z)

Proof. See [MV99, Section 3, Theorem 2.23].

Remark 2.4.50 The homotopy purity theorem is an analogy of tubular neighbour-

hood theorem in differential geometry.

Remark 2.4.51 Here we show the connection between homotopy purity and co-

homological purity. Let H∗ be an oriented cohomology theory on Sm/S factored

through H•(S). Note that Thom isomorphism theorem holds for H∗, since H∗

is oriented. Let i : Z → X be a closed embedding of smooth schemes and let

U = X\i(Z) ⊂ X. Then we have long exact sequence for the pair (X,U)

· · · H∗(X,U) H∗(X) H∗(U) H∗+1(X,U) · · ·

By the homotopy purity theorem, we have H∗(X,U) ∼= H∗(X/U) ∼= H∗(Th(NX/Z)).

Suppose Z is of codimension d, then the Thom isomorphism implies thatH∗(Th(NX/Z)) ∼=

H∗−d(Z). Now we combine these results together to get a Gysin long exact sequence

· · · H∗−d(Z) H∗(X) H∗(U) H∗−d+1(Z) · · ·

which implies the cohomological purity isomorphism

H∗−d(Z)
∼−→ H∗

Z(X)

Note that Gysin structures is essential for Riemann-Roch type theorems [Pan04].

From this point of view, homotopy purity is necessary for building a suitable homo-

topy theory for schemes.

More applications of homotopy purity can be found in [Mor12, Chapter 4].

2.4.4 Representability of K-theory

Definition 2.4.52 Let F be a simplicial presheaf over Sm/S. F is said to have the B.G.

property if

F(X) F(V)

F(U) F(U×X V)

is a homotopy cartesian diagram for any elementary distinguished square

U×X V V

U X

p

i
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Example 2.4.53 Note that a cartesian diagram of simplicial sets may not be a homo-

topy cartesian diagram. Thus not every Nisnevich simplicial sheaf has B.G. prop-

erty. However, if we assume a Nisnevich simplicial sheaf X is fibrant with respect

to Joyal’s model, then X has B.G property [MV99, Section 3, Remark 1.15].

Theorem 2.4.54 Suppose X,Y are two simplicial presheaves that have B.G. property.

Let f : X → Y be a morphism such that

LNis(f) : LNisX → LNisY

is a stalkwise weak equivalence. Then LNis(f) is a sectionwise weak equivalence.

Corollary 2.4.55 Let (X, x) be a pointed simplicial presheaf with B.G properties.

Then for any U ∈ Sm/S and any non-negative integer n, we have

πn(X(U)) = HomHs,•(S)(S
n ∧U+, (LNisX, x))

Furthermore, if we assume X is A1-local, then

πn(X(U)) = [Sn ∧U+, (LNisX, x))]A
1

•

Definition 2.4.56 Let X be simplicial presheaf (resp. sheaf). X is said to satisfy

descent if there is a fibrant replacement

j : X → X̃

such that for any U ∈ Sm/S

j(U) : X(U) → X̃(U)

is a weak equivalence of simplicial sets.

Theorem 2.4.57 Suppose X ∈ sShvNis(Sm/S) is a simplicial sheaf that is valued at

Kan complexes. Then X satisfies descent if and only if X has B.G. property.

Proof. See [MV99, Section 3, Proposition 1.16].

Theorem 2.4.58 Given X ∈ Sm/S, let K(X) be the K-theory space (a Kan complex).

Then the presheaf of K-theory X 7→ K(X) satisfies descent and is A1-local.

Proof. See [TT90].

Remark 2.4.59 In other words, the associated sheaf of K-theory spaces is a motivic

space.

Corollary 2.4.60 The nth K-functor Kn(X) = πn(K(X)) is representable in H•(S)

Kn(X) = [Sn ∧X+,K]A
1

•

2.4.5 Stable motivic homotopy theory

Definition 2.4.61 An S1s-spectrum over Sm/S is a collection {En,σn}n∈N, where En
is a pointed simplicial sheaf and σn : En∧ S1s → En+1 of simplicial sheaves for each
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n ⩾ 0. A morphism between S1s-spectra is a collection of morphisms of pointed

simplicial sheaves which are compatible with σn. Denote the category of S1s-spectra

over Sm/S by SpS
1
(S).

Definition 2.4.62 Let E be an S1s-spectrum. Let n ∈ Z be an integer. The nth stable

homotopy sheaf of E is the sheaf of abelian groups

πn(E) := colimr→∞πn+r(Er)
An S1s-spectrum is an Ω-spectrum if the adjunction map of σn

σ̃n : En → Hom(S1s ,En+1) =: Ω(En+1)

is a weak equivalence in sShvNis(Sm/S)Joyal (i.e. a stalkwise equivalence) for each

n.

Definition 2.4.63 A morphism of S1s-spectra f : E → F is a stable simplicial weak

equivalence if it induces an isomorphism

π(E) ∼= πn(F)

for any integer n.

f is a stable cofibration if the morphism

E0 → F0

and

En+1 ∨En∧S1s Fn ∧ S1s → Fn+1

is a simplicial cofibration (i.e. a monomorphism) for each n ⩾ 0.

Construction 2.4.64 There exists a a proper closed simplicial model category on

SpS
1
s (S) such that stable weak equivalences are weak equivalences and stable cofi-

brations are cofibrations in this model category [MV99, Jar00]. We denote the re-

sulting homotopy category by SH
S1s
s (S) and

Hom
SH

S1s
s (S)

(X,Y) = [X,Y]S
1
s
s

Lemma 2.4.65 An S1s-spectrum E is stably fibrant if E is an Ω-spectrum and each

En is fibrant in sShvNis(Sm/S)Joyal.

Lemma 2.4.66 The functor

Σ : SHS
1
s (S) −→ SHS

1
s (S)

E 7−→ S1s ∧ E

is an equivalence between categories.

Definition 2.4.67 Let E be an S1s-spectrum. E is said to be A1-local, if for any

X ∈ SpS
1
s , the projection

X∧ A1 → X
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induces a bijection:

[X,E]S
1
s
s → [X∧ A1,E]S

1
s
s

A morphism f : X → Y in SpS
1
s (S) is said to be a stable A1-weak equivalence if for

any A1-local S1s-spectrum E, the map

[Y,E]S
1
s
s → [X,E]S

1
s
s

is bijective.

Proposition 2.4.68 There exists a model category on SpS
1
s (S) such that weak equiv-

alences are exactly stable A1-weak equivalences. The resulting homotopy category

is denoted by SHS
1
s (S) called stable motivic homotopy category of S1s-spectra.

Proof. See [Jar00].

Theorem 2.4.69 Let SHS
1
s

s,A1(S) ⊂ SH
S1s
s (S) be the full subcategory of A1-local S1s-

spectra. Then the inclusion admits a left adjoint LA1 : SH
S1s
s (S) → SH

S1s
s,A1(S) called

A1-localization functor. Furthermore, it induces an equivalence

SHS
1
s (S) ≃ SH

S1s
s,A1(S)

Proof. The concrete construction can be found in [Mor04, Proposition 3.2.2].

Construction 2.4.70 Let Ab((Sm/S)Nis) be the category of sheaves of abelian groups

on the site (Sm/S)Nis. Then given M ∈ Ab((Sm/S)Nis), its Eilenberg-MacLane S1s-

spectrum is defined to be

HM := {M,K(M, 1),K(M, 2), . . . ,K(M,n), . . . }

where K(M,n)(U) := K(M(U),n) for each U (the simplicial set K(M(U),n) is given

by iterated bar constructions, see [May99, Section 16.5]).

Remark 2.4.71 For any X ∈ Sm/S, we have

[Σ∞(X+),Sn ∧HM]
S1s
s

∼= HnNis(X;M)

Definition 2.4.72 A sheaf of abelian groups M ∈ Ab((Sm/S)Nis) is said to be

strictly A1-invariant if for all X ∈ Sm/S and all n ⩾ 0, the projection X× A1 → X

induced an isomorphism

HnNis(X;M) ∼= HnNis(X× A1;M)

Lemma 2.4.73 For any M ∈ Ab((Sm/S)Nis), M is strictly A1-invariant if and only

if HM is A1-local.

Definition 2.4.74 A P1-spectrum over Sm/S is a collection {En,σn}n∈N, where En is

a pointed simplicial sheaf and σn : En ∧ P1 → En+1 of simplicial sheaves for each

n ⩾ 0. A morphism between P1-spectra is a collection of morphisms of pointed

simplicial sheaves which are compatible with σn. Denote the category of P1-spectra

over Sm/S by SpP1(S).



power operations in classical homotopy theory and motivic homotopy theory 51

A T -spectrum over Sm/S is a collection {En,σn}n∈N, where En is a pointed simpli-

cial sheaf and σn : En∧ T → En+1 of simplicial sheaves for each n ⩾ 0. A morphism

between T -spectra is a collection of morphisms of pointed simplicial sheaves which

are compatible with σn.

Remark 2.4.75 Note that P1/A1 = T , which means that P1 is A1-weak equivalent

to T . Therefore, the notion of T -spectrum is equivalent to the notion of P1-spectrum.

Example 2.4.76 (Thom spectrum) For any X ∈ Sm/S, let E be a vector bundle on X

and let O be the rank 1 trivial vector bundle over X. Then we have

Th(E⊕O) = Th(E)∧ T

where ⊕ is the Whitney sum. Now we let Grn be the infinite Grassmanian for rank

n vector bundle and let γn → Grn be the universal vector bundle. Note that γn⊕O

is a vector bundle of rank n+ 1 and we let fn : Grn → Grn+1 be the classifying

map of γn ⊕O. The classifying map induces

Th(γn)∧ T → Th(γn+1)

Then the Thom spectrum MGl is a T -spectrum defined by

{T , Th(γ1), Th(γ2), . . . , Th(γn), . . . }

Remark 2.4.77 In the motivic context, a spectrum usually means a P1-spectrum.

We simply use Sp(S) := SpP1(S).

Definition 2.4.78 For each U ∈ Sm/S and any pair (n,m) ∈ Z2 of integers and any

P1-spectrum E, we define

π̃n(E)m(U) := colimr→∞[U+ ∧ Sn+m ∧ (P1)∧(r−m),Er]A
1

•

Definition 2.4.79 A morphism of P1-spectra f : E→ F is a stable A1 weak equivalence

if it induces an isomorphism

π̃n(E)m ∼= π̃n(F)m

for any pair (n,m) ∈ Z2.

f is a stable cofibration if the morphism

E0 → F0

and

En+1 ∨En∧P1 Fn ∧ P1 → Fn+1

is a simplicial cofibration (i.e. a monomorphism) for each n ⩾ 0.

Proposition 2.4.80 There exists a model category on SpP1(S) such that stable A1-

weak equivalences are weak equivalence and stable A1-cofibrations are cofibrations.

The resulting homotopy category is the motivic stable homotopy category SH(S).
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For any E, F ∈ SH(S), we denote

[E, F]P
1
:= HomSH(S)(E, F)

Remark 2.4.81 Similarly, the suspension construction gives a functor

Σ∞
P1

: H•(S) → SH(S)

Proposition 2.4.82 The functor

ΣP1 : SH(S) −→ SH(S)

E 7−→ E∧ P1

is an equivalence.

In this sense, P1 is “invertible" in the SH(S).

Construction 2.4.83 For any spectrum E and for any n, i ∈ Z, we set

E(i)[n] := E∧ Sn,i

For any X ∈ sShvNis(S)•, we set

Ẽn,i := [Σ∞
P1

(X),E(i)[n]]P
1

Then we have a functor Ẽ∗,∗ from sShvNis(Sm/S)op• to the category of bigraded

abelian groups, which is the reduced cohomology theory associated to E. For any X ∈
sShvNis(S), we set

En,i := [Σ∞
P1

(X+),E(i)[n]]P
1

Then we have a functor E∗,∗ from sShvNis(Sm/S)op to the category of bigraded

abelian groups, which is the cohomology theory associated to E.

Remark 2.4.84 Recall the models for stable homotopy theory in Subsubsection 2.1.3,

Jardine construct motivic symmetric spectra in [Jar00] in analogy to symmetric spec-

tra. Hu construct motivic S-modules in [Hu03] in analogy to S-modules.

2.4.6 Other models for motivic homotopy theory

Construction 2.4.85 (Dugger, [Dug01]) There is a projective model structure on sPre(Sm/S)

such that

1. f : X → Y is a weak equivalence if f : X(U) → Y(U) is an equivalence of

simplicial sets for all U ∈ Sm/S,

2. f is a fibration if f : X(U) → Y(U) is a fibration of simplicial sets for all U ∈
Sm/S,

3. f is a cofibration if it has left lifting property with respect to acyclic fibrations.

and this model category is a left proper combinatorial simplicial model category.

This model category is a universal model category of Sm/S in the sense of [Dug01],

and we denote it by U(Sm/S) (it is a “homotopy cocompletion" of Sm/S).
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Let X ∈ Sm/S and suppose U∗ is a simplicial presheaf with a morphism of

presheaves U∗ → X. This map is called a Nisnevich hypercover if

1. Each Un is a coproduct of representable presheaves,

2. U0 → X is a Nisnevich cover,

3. For every integer n ⩾ 1, the component U∆
n → U∂∆

n
in degree 0 is a cover.

A Čech cover is a hypercover U∗ → X such that each U∆
n → U∂∆

n
. Given a Nis-

nevich cover U→ X in Sm/S, the associated Čech cover (U)∗ is defined to be

Č(U)n := U×X U×X · · · ×X U

Let Nis be the class of the natural map

hocolimU∗ → X

where X runs through all objects of Sm/S and U∗ runs through all Nisnevich hy-

percovers of X. Let U(Sm/S)/Nis be the model category obtained by Bousfield lo-

calization with respect to Nis from U(Sm/S). Finally, let U(Sm/S)A1 be the model

category obtained by Bousfield localization with respect to X × A1 → X for all

X ∈ Sm/S from U(Sm/S)/Nis.

Proposition 2.4.86 (Dugger) There is a Quillen equivalence

U(Sm/S)A1
∼−→ LA1SpcNis(S)Joyal.

Proof. According to [Dug01, Proposition 7.3], we have the following Quillen equiv-

alence

U(Sm/S)/Nis sPre(Sm/S)Jardine sShvNis(Sm/S)Joyal

Then see [Dug01, Proposition 8.1].

Remark 2.4.87 One advantage of U(Sm/S)/Nis over sPre(Sm/S)Jardine is that the

fibrant objects are much easier to describe. Referring to [DHI04, Theorem 1.3], a

motivic space F is fibrant in U(Sm/S)/Nis if

1. F(X) is fibrant for any X ∈ Sm/S,

2. for any Nisnevich hypercover U∗ → X, the natural map F(X) → holimnF(Un)

is a weak equivalence.

Another advantage of U(Sm/S)A1 is that it exhibit the H(S) as a universal ho-

motopy category in the following sense: given a functor F from Sm/S to a model

category M such that the natural map F(X× A1) → F(X) is a weak equivalence

for any X ∈ Sm/S and sends any elementary distinguished square to a homotopy

push-out diagram, then it factor through U(Sm/S)A1 uniquely up to “homotopy".

Therefore, we can characterize (unstable) motivic homotopy theory by its unisersal

property. The rigorous definitions and proof can be found in [Dug01, Section 8].

See also Nardin’s MO answer [Nar18].
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Remark 2.4.88 The constructions in Construction 2.4.10, Remark 2.4.21 and Con-

struction 2.4.85 do not rely on the choice of the Nisnevich topology and so do

the Quillen equivalences among them. They hold for any general (small) site, see

[Dug01, Jar87, Jar07, Jar15, MV99].

Remark 2.4.89 Actually, the construction of motivic homotopy category is indepen-

dent of the choice of model structures. To be more specific, all these model cate-

gories have equivalent underlying ∞-categories, which is the ultimate reason why

their homotopy categories are equivalent. More advantages of ∞-categories are

analyzed in Robalo’s thesis [Rob15, Section 2.2]. We will show the ∞-categorical

formalism of motivic homotopy category later.

3 some questions for further investigation

To study methods of homotopy theory in algebraic geometry from the viewpoint

of cohomology operations, we first study the ∞-categorical formalism of homotopy

theory in order to avoid the issues about different choices of models (see Subsub-

section 2.1.3 and Subsubsection 2.4.6). Meanwhile we study the essential work-

ings of power operations and multiplicative structures in classical homotopy theory

[May77, BMMS86]. Finally, we try to combine the two and study a framework

in algebraic geometry analogous to the classical framework via the contemporary

formalism [BEH21, BH21] in the motivic setting.

3.1 Infinity-categorical formalism of motivic homotopy theory

As a part of this thesis, we plan to study Robalo’s ∞-categorical formalism of mo-

tivic stable homotopy theory [Rob15]. In particular, we would like to understand

how to characterize motivic stable homotopy theory by universal properties. The

key point of this characterization is to present monoidal structures in the context

of homotopy theory, but it is extremely hard to realize this in terms of model cat-

egories. In Robalo’s work, he solved this problem by using the framework of ∞-

categories. The foundation of this framework is established in Lurie’s work on

higher topos theory [Lur09] and higher algebra [Lur17].

3.2 How the Adams spectral sequences exhibit H∞-structures

In the 1980s, May and his collaborators studiedH∞-structures (see Definition 2.2.24),

a fundamental class of multiplicative structure [BMMS86]. In the monograph, Bruner

revealed how the power operations present in the E2-page reflect the multiplicative

information of the homotopy classes in the E∞-page along an Adams spectral se-

quence. Given an H∞-ring spectrum E, a suspension spectrum X, and a ring spec-
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trum Y, we summarize the mechanism of H∞-structures studied by Bruner in the

following diagram.

power operations extended powersH∞-structure

Exts,t
E∗E(E

∗Y,E∗X) [X, Y]Et−s
E∞-pageE2-page

How to convert cohomology operations into homotopy operations

differentials in the Adams spectral sequence

induces at

homotopy level

induces at

cohomology level

displayed displayed

converges along the Adams spectral sequence

encoded

presented

We would like to understand the diagram through examples, centering around the

boxed part, and try to extend this mechanism to motivic homotopy theory.

3.3 How motivic extended powers emerge in the motivic Adams spectral sequences

Recently, Bachmann and Hoyois have formally introduced the notion of a normed

motivic spectrum [BH21], which is a refinement of a motivic E∞-ring spectrum.

Since one can derive H∞-structures from E∞-structures by taking the homotopy

action of the E∞-operad in classical homotopy theory, we expect that a motivic H∞-

structure should arise from this normed structure. In [BEH21], Bachmann, Elmanto,

and Heller constructed motivic extended powers by using motivic colimits. Both

of these two new notions give rise to power operations in motivic cohomology. It

is still unknown how they are related to each other and to motivic Adams spectral

sequences. Our goal is to investigate these potential relations based on their classical

analogue as in Section 3.2, especially the dashed arrows and the ovalbox in the

following diagram.

normed motivic spectrum motivic extended powers

motivic power operations

motivic Adams spectral sequences

�� ��motivic H∞-structure?

Bachmann-Hoyois Bachmann-Elmanto-Heller

Dugger-Isaksen [DI10]
?

?
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