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CLASS GROUPS AND RIEMMAN-ROCH THEOREM: AN BRIEF

INTRODUCTION TO ALGEBRAIC GEOMETRY

LIANG TONGTONG

Abstract. Class groups and Riemann-Roch theorem are basic notions and

theorems in arithmetic and algebra. I will introduce them in a geometric or
topological way by using the language of schemes. First, we may turn arith-

metical and algebraic objects (rings and modules) into geometric and topo-

logical objects (schemes and quasicoherent sheaves), then we use the methods
of algebraic topology ((co)homology) to study them. We will see some theo-

ries in algebraic topology have an algebraic geometry version, which are very

powerful.
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Introduction

In the first section, I will give a brief introduction to the language of schemes,
which builds a bridge from arithmetics to topology, so that we can apply methods
of algebraic topology to develop arithmetics. The language of schemes is conven-
tioned by Alexander Grothendieck. The motivation for him to develop scheme is
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2 LIANG TONGTONG

to solve Weil conjecture totally. Weil conjecture is conjecture about the connection
between the number of finite field points and topology of complex points on a kind
of variety, where the former one is about arithmetic and the latter one is about
topology. Finally, Grothendieck’s student, Deligne solved Weil conjecture by using
the language of schemes and étale cohomology.

In the second section, I will introduce quasicoherent sheaves and how we define
a generalized notion of class groups by quasicoherent sheaves. In particular, This
survey focus on desribe the relations among divisors, line bundles and algebraic
cycles.

In topology, bundles of a topological space character the space effectively; in
ring theory, modules and ideals of a ring character the ring in an analogous way;
in algebraic geometry, an analogous pattern is the study of quasicoherent sheaves
on schemes, which draws on the experience the study of bundles and the study of
modules. The second section will be presented in this spirit.

In the third section, I will show the construction of cohomology machinery for
quasicoherent sheaves on schemes and an important algebraic invariant, arithmetic
genus via Euler characteristic. Then I give a statement and proof of Riemann-Roch
theorem on regular projective curves. There should have had some application of
Riemann-Roch theorem in this survey, but time is limit, so there is no application
of Riemann-Roch theorem.

1. Geometric viewpoint: Language of schemes

1.1. Notion of schemes.

Definition 1.1 (Scheme). A locally ringed space (X,OX) is an affine scheme if
there exists a ring A such that (X,OX) ∼= SpecA as locally ringed space. Generally,
(X,OX) is a scheme if for any point x ∈ X, there exists an open neighbourhood
U of x such that (U,OX |U) is isomorphic to an affine scheme. For convenience, we
may simply write X instead of (X,OX).

Notation: Given a point p ∈ X, we denote the stalk, a local ring, at p by OX,p
and the residue field k(p).

Remark 1.2. This notion is similar to the notion of manifolds: a real topological
manifold is ”glued” by copies of Rns vs a scheme is ”glued” by {SpecAi}. The word
”glued” is strictly defined by using cocycle conditions. See [Wed16] Proposition 4.11
for details.

Since schemes are locally ringed spaces, we just take them as a subcategory of the
category of locally ringed spaces i.e. morphisms between schemes are morphisms
between locally ringed space. Here are some examples: n-dimensional affine space
Ank = Spec k[x1, . . . , xn]. We may view the a closed set in Ank as a set of solutions
to an algebraic equations (consist of polynomials). This example is a trivial but
intuitive one. Note that it is not true that every scheme is an affine scheme and we
will see the non-trivial construction in 1.3.

Although the concept of schemes is similar to manifolds, there are some subtle
phenomenon that only happens on schemes.

Definition 1.3 (Generic point). X is topological space and K is a closed subset

of X. We call k is a generic point of K if {k} = K.
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Definition 1.4 (Closed point). A point of topological space is said to be a closed
point if

{p} = {p}
We will see that in Hausdorff space, every point is a closed point, so this notion

is trivial for manifolds. However, in schemes, this notion makes sense.

Proposition 1.1. Every closed point in SpecA corresponds to a maximal ideal in
A.

Now to give the concept about generalization and specialization. Suppose
X is a topological space, given a pair of points x, y in X, then we call x is a
specialization of y and y is generalization of x if x ∈ {y}.
Example 1.5 (An interesting but not formal example). This idea comes from
Mumford’s treasure maps, see [Mum99] P72 Example C for more details. Let us
image SpecZ as a tape measure in the picture below. Its closed points (or special
points) [(2)], [(3)], etc. are marked along the strip, while the generic point [(0)]
is always hidden in the case. We can then preform a specialization of the generic
point to special point [(p)] by pulling out the strip as far as the mark for [(p)]
indicates. The reverse line segment, with endpoints[(p)] and [(0)], is a good picture
for SpecZ(p). The reverse process of the strip returning to the case is of course
a generization. Our mental picture is that the generic point should always be
surrounded by all the special points, as in the case, so that each neighborhood of
each special point contains the generic point. Equivalently, we may image that the
generic point permeates the entire spectrum so it is everywhere and shapeless.

1.2. Some properties of schemes and morphisms I. Actually, properties on
morphisms (relative version) are more essential than properties on schemes diretly
(absolute version). This idea comes from Grothendieck.

Before we introduce properties, we need to classify types of properties.

Definition 1.6. Let P be a property on schemes, we say P is an affine-local
property the following assertion is ture: X has property P if and only if there is
an affine open cover {UI} of X and each open subscheme has property P. In other
words, one can check whether X has property P by check on any affine open cover.

Let P be a property of morphisms, we say P is affine local on the targets
(resp sources) if we can check whether morphism π : X → Y has property P by
checking any affine open over on Y (resp. X).

Most of important properties of schemes and morphisms are affine-local, which
means that we can verify properties handily. However, checking whether a propert
is affine-local or not still need some tools:

Lemma 1.7 (Affine Communication Lemma). Let P be some property enjoyed by
some affine open subsets of a scheme X, such that:

(1) if an affine open subset SpecA ↪→ X has property P , then for any f ∈ A,
SpecAf ↪→ X has P, too

(2) if (f1, . . . , fn) = A, and SpecAfi ↪→ X has property P , then so does
SpecA ↪→ X

Suppose that X = ∪i∈ISpecAi where SpecAi has property P. Then every open
subset of X has P, too.
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To prove this lemma, we still need a proposition:

Proposition 1.2. Suppose SpecA and SpecB are affine open subschemes of a
scheme X. Then SpecA∩ SpecB is the union of open sets that are simultaneously
distinguished open subschemes of SpecA and SpecB.

Proof. Given any point p ∈ SpecA ∩ SpecB, we let SpecAf ⊂ SpecA ∩ SpecB be
an distinguished open set of SpecA that contains p. Let SpecBg ⊂ SpecAf be a
distinguished open subsecheme of SpecB that contains p. Then g ∈ Γ(SpecB,OX)
restricts to an element g′ ∈ Γ(SpecAf ,OX).The points of SpecAf where g van-
ishes aare precisely the points if SpecAf that g′ vanishes. Hence SpecBg =
SpecAF \{[p] | g′ ∈ p} = Spec (Af )g′ . We may write g′ = g′′/fn where g′′ ∈ A,
then SpecBg = SpecAfg′′ , and for each point we can find such distinguished open
subscheme and it is done. �

Proof of Lemma 6.1. Let SpecA be an affine subscheme of X, we may assume
SpecA is covered by finite number of affine open subscheme of SpecAf , each of
which is also distinguished in some SpecAi. Then by (1), each SpecAf has property
P, then by assumption (2), SpecA has property P. �

Definition 1.8 (Some topological properties of schemes). Let X be scheme, X is
quasicompact if any open cover of X admits a finite subcover. X is quasisepa-
rated if the intersection of any two quasicompact subsets X is quasicompact.

One can check that any affine scheme is quasicompact and quasiseparated. We
next show the relative version:

Definition 1.9. A morphism π : X → Y is quasicompact if for every open
affine subset U of Y , π−1(U) is quasicompact. π is quasiseparated if π−1(U) is a
quasiseparated scheme.

Remark 1.10. Actually, quasicompactnees and quasiseparatedness of morphisms
are affine local on the target.

Remark 1.11. Note that the terminal object in the category of schemes is SpecZ i.e.
for any scheme X, there is a unique structure map X → SpecZ, then the relative
version coincide with the absolute version in the following way: the X → SpecZ
is quasicompact (resp. quasiseparated), then X is quasicompact (resp. quasisepa-
rated). The next lemma will show how these two properties of morphism help us.
Conversely, a morphism from a quasiseparated scheme is quasiseparated. However,
in general, a morphism from a quasicompact scheme may not be quasicompact, but
the result is true when considering Noetherian scheme, see Proposition 1.6.

Lemma 1.12 (Qcqs Lemma). If X is a quasicompact and quasiseparated scheme
and s ∈ Γ(X,OX), then the natural map Γ(X,OX)s → Γ(Xs,OX) is an isomor-
phism.

Here Xs means the set of points that s does not vanish and one can check that
it is indeed an open set. The proof of this lemma is in [Vak17], 7.3.5. This lemma
is significant, because it plays an important role in the proof of the assertion that
given a quasicompact and quasiseparated morphism X → Y , the pushforward of a
quasicoherent sheaf on X is a quasicoherent sheaf on Y .
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Definition 1.13 (Affine morphism). Let f : X → Y be a morphism, then we say f
is an affine morphism if for any affine open subset SpecB of Y , f−1(SpecB) ∼=
SpecA for some ring A.

Proposition 1.3. Affineness of morphisms is affine local on the targets,

Proof. By using the Qcqs lemma, we can prove this proposition, see [Vark17], 7.3.7.
�

Next part is about some basic algebraic properties of schemes (some of them will
be related to topological properties).

Definition 1.14 (Reducedness and integrality). Let X be a scheme, X is a re-
duced (resp. integral) if OX(U) is a reduced ring (resp. integral domain) for
any open subset U of X.

Definition 1.15 (Function field). Let X be an integral scheme so that X has a
unique generic point η. The stalk OX,η is called function field of X. We denote
it by K(X). In particular, when A is an integral domain, K(SpecA) = K(A), the
fraction field of A.

Remark 1.16. Reducedness is stalk local i.e. one can check whether a scheme is
reudced by checking all the stalks. However, integrallity is not stalk local, because
it shows the irreduciblity and the data of stalks cannot tell us whether a scheme is
irreducible, see next proposition.

Proposition 1.4. A scheme X is integral if and only if X is irreducible and re-
duced.

Proof. Suppose X is integral, then OX(U) is integral and in particular reduced
for any open subset U . It remains to show X is irreducible. Suppose X is not
irreducible, then we have two disjoint non-empty open subset U, V of X. Consider
OX(U ∪ V ), by sheaf axiom, OX(U ∪ V ) ∼= OX(U) × OX(V ), contradiction to
OX(U ∪ V ) is integral.

Conversely, if X is irreducible and reduced. For an affine open subset SpecA
of X, let ideals I, J with IJ = 0 in A, then V (I) ∪ V (J) = V (IJ) = SpecA. If
both of V (I), V (J) are proper closed subsets, then there exists two proper closed
subset Z,W of X such that Z ∩ SpecA = V (I) and W ∩ SpecA = V (J). Then
X = Z ∪ W ∪ (SpecA)c a union of proper closed subset, contradiction. Hence
either V (I) = SpecA or V (J) = SpecA. We may assume V (I) = SpecA, then I is
contained in the radical of A, then I = 0 because A is reduced (the radical is 0).
Hence A is an integral domain. �

Remark 1.17. We see that in algebraic geometry, topological properties and alge-
braic properties are related.

Definition 1.18 ((locally) Noetherian scheme). Let X be a scheme, we say X is
a locally Noetherian scheme if X can be cover by affine open subsets SpecA
where A is Noetherian. Further, X is a Noetherian scheme ifX is a quasicompact
locally Noetherian scheme.

Proposition 1.5. Locally Noetherian schemes are quasiseparated.

Proof. Let X be a locally Noetherian scheme covered by {SpecAi} where Ai is
Noetherian ring. We first claim that when A is a Noetherian ring, then any open
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set of SpecA is quasicompact. Suppose U = SpecA \ V (I) for some ideal I,
and I = (f1, . . . , fn) because A is Noetherian, then U = SpecA \ (∪ni=1V (fi)) =
∩ni D(fi) = D(f1 . . . fn) = SpecAf1...fn , which is quasicompact because it is affine.
Further, Af1...fn is a Noetherian ring.

Given any two quasicompact open set U,W of X, since U is quasicompact,
suppose U is covered by {SpecAi}ni . Then U ∩W = ∪ni=1(SpecAi ∩ (U ∩ V )). By
previous claim, U ∩W is a finite union of quasicompact open sets, hence U ∩W is
compact. �

According to the proof of the first claim, we have a lemma:

Lemma 1.19. Let A be a Noetherian ring, then any non-empty open set of SpecA
is affine, in particular, quasicompact.

Use the lemma, we can prove the next proposition easily:

Proposition 1.6. Any morphism from a Noetherina scheme is quasicompact.

Definition 1.20 (Normality and factoriality). We say a scheme X is normal
(resp. factorial) if all of its stalks are integrall closed domain i.e. normal
(resp. UFD)

Remark 1.21. Normality can imply reducedness, becaus they are all stalk local,
while normality cannot imply integrality. Note that a UFD is normal, so factoriality
can imply normality.

1.3. Important construction: projective schemes. Let S =
⊕∞

n=0 Sn be a N-
graded ring and S+ =

⊕∞
n=1 Sn be the irrelevant ideals. Now to construct ProjS,

the projective scheme: First, points of ProjS are the set of homogeneous prime
ideals of S that do not contain S+. Second, to define the topology on ProjS, we
set the closed subset of ProjS is of the form V (I) = {[p] ∈ ProjS | I ⊂ p} where
I is a homogeneous ideal of S. It is clear that this set-up satifies the axioms of
topology. Third, we need to construct the structure sheaf of ProjS. Recall the
precedure that we define structure on SpecA: we define sheaves on the base of
SpecA (the distinguished open subsets of SpecA) then glue the sheaves on base
together to get a sheaf on SpecA because it satisfies cocycle condition. We now
get our goal in an analogous way. Let D(f) := ProjS \ V (f) be the projective
distinguished open set for a homogeneous element f ∈ S+. Now it suffices to show
a projective distinguished open set is an affine open set. According to the definition
of localization, the set of D(f) is the set of homogeneous prime ideals of Sf .

Proposition 1.7. There is a bijection between the set of homogeneous prime ideals
of Sf and the prime ideals of (Sf )0. In this way, D(f) = Spec (Sf )0.

Proof. Let (Sf ) = A and we have a natural inclusion A0 ↪→ A. For homogeneous
prime ideal p of A, p ∩ A0 is a prime ideal of A0. This gives a map from the set
of homogeneous prime ideals of A to SpecA. Conversely, let p0 be a prime ideal in

A0 and define p ⊂ A as p = ⊕Pi where Pi := {ai ∈ Ai | adeg fi /f i ∈ p0 for i > 0 and
P0 = p0.

First, p ∩A0 = p0 clearly.
Second, it is obvious that a ∈ Pi if and only if a2 ∈ P2i.
Third, claim that if a, b ∈ Pi, then a + b ∈ Pi: adeg f/f i, bdeg f/f i ∈ P0 implies

(ab)deg f/f2i ∈ P0, then ab ∈ P2i. Consider (a+b)2 deg f/f2i =
∑
cna

nb2 deg f−n/f2i,
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we have either n > deg f or 2 deg f − n > deg f , then anb2 deg f−n/f2i ∈ P0 for all
n because either adeg f/f i or bdeg f/f i divides it. Then (a + b)2 ∈ P2i. By the
claim in the second step, a + b ∈ Pi. Hence p is a homogeneous ideal clearly.
Fourth to show p is prime, it suffices to show for any gi ∈ Ai, gj ∈ Aj such that
gigj ∈ p, we have either gi ∈ p or gj ∈ p (the general case can be reduced to this
case by writing elements into a sum of homogenuous items). Since gigj ∈ Pi+j ,

we have (gigj)
deg f/f i+j = (gdeg fi /f i)(gdeg fj /f j) ∈ p0, then either gdeg fi /f i ∈ p0

or gdeg fj /f j ∈ p0. Hence either gi ∈ p or gj ∈ p. Hence p 7→ p ∩ A0 is sur-

jective. It is injective, if there is homogeneous element x ∈ p but x /∈ p′, then

xdeg
f

/fdeg x /∈ p′ ∩A0. Thus we have a bijection. �

After above construction and arguement, ProjS is indeed a scheme. If S =
A[x0, . . . , xn], we denote ProjS by PnA and call it n-dimensional A-projective
space or simply projective space. In particular, if n = 1, we call it projective
line; if n = 2, we call it projective space.

If S = k[x0, . . . , xn], then we will see that S+ is finitely generated by x0, . . . , xn as
S0 = k-algebra, in otherwords, D(xi) will be an affine open cover of Pnk . Specifically,

(1) (Sxi
)0 = {

∑
k0+···+kn=0

akx
k0
0 . . . xknn | kj > 0 for j 6= i; ki ∈ Z}

Further
(Sxi

)0 ∼= k[
x0
xi
, . . . ,

xn
xi

]

Example 1.22 (k-projective is not affine). If P1k is an affine scheme, then it is
isomorphic to Spec (Γ(P1k,OP1

k
)). Now claim that

Γ(P1k,OP1
k
) = k

First, let D(x0) and D(x1) covers P1k and by sheaf axiom, we have the exact se-
quence:

0→ Γ(P1k,OP1
k
)→ Γ(D(x0),OP1

k
)× Γ(D(x1),OP1

k
)→ Γ(D(x0x1),OP1

k
)

Hence in the form of formula 1

Γ(P1k,OP1
k
) = {

∑
k0+k1=0

akx
k0
0 x

k1
1 | k1 > 0 k0 ∈ Z}∩{

∑
k0+k1=0

akx
k0
0 x

k1
1 | k0 > 0 k1 ∈ Z}

Then
Γ(P1k,OP1

k
) = {

∑
k0+k1=0

akx
k0
0 x

k1
1 | k1, k0 > 0} = k

However, P1k is not a single point, so P1k 6= Spec k, which means that it is not affine.

Proposition 1.8. If S is a finitely generated graded ring over S0 such that S+ is
generated by S1, then Γ(ProjS,OProjS) = S0.

Proof. We can use the method in previous example to prove this proposition. �

Definition 1.23. A quasiprojective A-scheme is a quasicompact open subscheme
of a projective A-scheme.

Definition 1.24. A rational map from X → Y is a morphism on a dense open
subset U of X. A rational map is dominant if its image is dense in Y .

we may use (U, f) to represent a rational map f , where U ⊂ X is an open dense
subset i.e. the generic points of irreducible components of X are in U .
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Remark 1.25. If X is an irreducible scheme, then U is an open dense set of X if
and only if U contains the generic point of X.

Remark 1.26. We may identify

Γ(X,OX) ∼= MorSch(X,A1
Z)

further if X is a k-scheme, then

Γ(X,OX) ∼= MorSch(X,A1
k)

If X is an integral scheme, we may identify the function field K(X) with the field
of rational maps from X to A1, which are called rational functions. In other
words, a rational function is a section on a open dense subset of X.

Example 1.27. The rational function field of Pnk is

{f/g ∈ k(x0, . . . , xn) | f, g are homongenous and of the same degree})
.

1.4. Some properties of schemes and morphisms II.

1.4.1. Closed embedding. Let X be a scheme, U be an open subset of X, the sub-
scheme structure of U is easily to be defined by (U,OX |U ), but for closed subsets,
the situation is more subtle: how to defined the structure sheaf on the closed
subset so that the definition makes sense. For affine case, any closed subset of
SpecA is of the form V (I) for some ideal I and we have the natural correspondence
V (I) ∼ SpecA/I. Follow this observation, we have the following definition:

Definition 1.28 (Closed embedding). A morphism π : X → Y is a closed em-
bedding if it is an affine morphism and for any affine subset SpecB of Y , the
restriction π|SpecA : SpecA → SpecB corresponds to a surjective ring homomor-
phism π# : B → A. If X is an closed subset of Y , then we say X is a closed
subscheme of Y .

Remark 1.29. The data of a closed embedding gives a sheaf morphism on Y

OY → π∗OX

Note that π∗OX is an OY -module and this sheaf morphism has the data of all the
induced surjective ring homomorphisms in the definition:

OY (SpecB) = B → π∗OX(SpecA) = A ∼= B/I

This shows some connection between closed subscheme of Y and some kind of OY -
module on Y . We will show this connection in the section of quasicoherent sheaves.

Example 1.30. A closed subscheme of Pnk cut out by a singele nonzero homogenu-
ous equation is called a hyersurface. The degree of the hypersurface is defined
to be the degree of the homogenuous polynomial.

Definition 1.31 (Locally closed embedding). A morphism π! : X → Y is a locally
closed embedding, if there is an open subscheme U of Y such that π−1(U) = X
and π : X → U is a closed embedding. If X is a subscheme of Y , then X is a
locally closed subscheme of Y .

Theorem 1.32. Suppose f : X → Z and g : Y → Z are arbitrary two morphisms
between schemes, then the fiber product (or pull-back) exists (in the category of
schemes).
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Remark 1.33. Note that for any point p in a scheme Y , we may identify p with a
morphism Spec k(p) → Y (k(p) is the residue field of p), then given a morphism
π : X → Y , π−1(p) = Spec k(p)×Y X, which is called the fiber of π at p.

Remark 1.34. Let U, V be two open subscheme of X, the the pullback of the inclu-
sions U ×X V can be identified with the open subscheme U ∩ V .

Proposition 1.9. Let π : X → Y be a morphism, then the diagonal morphisms
δ : X → X ×Y X is a locally closed embedding.

Sketch proof. We just reduce it to affine case SpecA → SpecB and clearly A ⊗B
A→ A is surjective. �

Remark 1.35. Suppose X is an A-scheme, ∆ be the locally closed subscheme of the
diagnal map δ : X → X ×Y X.

Remark 1.36. Let X be an A-scheme, U, V be two open subsets of X, then we have

∆ ∩ (U ×A V ) ∼= U ∩ V
this is because

X ×X×AX (U ×A V ) ∼= U ×X V

then recall Remark 1.34.

1.4.2. Separatedness.

Definition 1.37 (Separatedness). A morphism π : X → Y is separated if the
diagonal map X → X ×Y X is a closed embedding. X is a separated scheme if
the identity map is separated.

Remark 1.38. Separatedness is an affine local property.

Definition 1.39 (Variety). A variety over a field k is a reduced, separated scheme
of finite type over k. We also call them k-varieties.

Proposition 1.10. Let X be a separated scheme, then the intersection of any two
affine open subsets of X is affine open.

Theorem 1.40. Let π : X → Y and π′ : X → Y be two morphisms from a reduced
scheme X to a separated scheme Y , if they agree on a dense open subset of X, then
they are the same.

1.4.3. Dimension.

Definition 1.41 (Dimension). Let (X,OX) be a scheme and X is the underlying
topological space, then the dimension of the scheme X is the the dimension of the
topological space X: the supremum of lengths of chains of closed irreducible sets
(the index starts with 0). We say a topological space is equidimensional or pure
dimensional. An equidimensional topological space of dimension 1 (resp. 2, n) is
saied to be a curve (resp. surface, n-fold). In this notes, we take k-varieties as
the topological spaces when we mention curves, surfaces and n-folds.

Remark 1.42. Let X = SpecA, then the Krull dimension of A is the same as the
dimension of SpecA.

Definition 1.43 (Codimension). The codimension of an irreducible subset
Y ⊂ X of a topological space is the supremum of lengths of increasing chains of
ireducible closed subsets starting with Ȳ (the index starts with 0), which is denoted
by codimXY .
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Remark 1.44. Let X = SpecA and an irreducible closed set of X corresponds to
a prime ideal p of A. Then the height of p is the same as codimXV (p). Further,
the height of a prime ideal p is the same as the dimension of Ap.

Proposition 1.11. Suppose Y is an irreducible closed subset of a scheme X and η
is the generic point of Y . Then the codimension of Y is the dimension of the local
ring OX,η.

Sketch proof. According to the definition of codimension, we have codimXY =
codimXη. Then we may reduce the case to affine case by assuming X is affine
(otherwise pick an affine open neighbourhood X ′ of η and Y ′ = Y ∩ X ′. It is
clearly that codimX′Y

′ = codimXY ), then the result follows by Remark 1.44. �

Remark 1.45. We will see that a generic point η of an irreducible closed subset Y
of a scheme X contains a lot of data of Y and sometimes we can use the generic
point η to represents Y , especially when we talk about divisors.

Theorem 1.46. Suppose X is an equidimensional k-scheme locally of finite type,
Y is an irreducible closed subset and η is the generic point of Y . Then dimY +
dim OX,η = dimX. By Proposition 1.11, dimY + codimXY = dimX

Theorem 1.47 (Krull’s Principal Ideal Theorem: geometric version). Suppose X is
a locally Noetherian scheme and f is a function on X. The irreducible components
of V (f) are of codimension 0 or 1.

Sketch proof. This result follows the Krull’s principal ideal theorem in commutative
algebra. �

1.4.4. Regularity. This property is very important when we discuss divisors.

Theorem 1.48. Suppose (A,m, k) is a Noetherian local ring, then dimA 6 dimk m/m
2.

Definition 1.49. A local ring (A,m, k) is regular if dimA = dimk m/m
2. For a

scheme X, a point x ∈ X is a regular point if OX,x is a regular local ring. A
scheme is regular if all the points are regular. If a point of a scheme is not
regular, then we call this point singular point.

We will see that regularity is a very good property for Noetherian local rings.

Theorem 1.50. Suppose (A,m) is a Noetherian local ring of dimension 1. Then
the following are equivalent.

(1) (A,m) is regular.
(2) m is principal.
(3) all ideals are of the form mn for n > 0 or (0).
(4) A is a principal domain.
(5) A is a discrete valuation ring.
(6) A is a normal domain i.e. integrally closed.

Proof. See [Vak17] 12.5 or any textbook about commutative algebra. �

Example 1.51. Let A be a Dedekind domain, SpecA is a regular scheme because
Ap is a discrete valuation ring for each prime ideal p in A.

Proposition 1.12. Suppose X is a Noetherian normal scheme, then it is regular
in codimension 1 i.e. every point of codimension at most 1 is regular.
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Proof. See the Definition 1.20 of normal scheme and Theorem 1.50, then the result
is straightforward. �

Geometric interpretation of regularity: Recall the cotangent space of a smooth
manifold M , and let OM be the sheaf of smooth functions on M . Suppose x ∈ M
and the cotangent space is mx/m

2
x where mx is the maximal ideal of the local ring

OM,x, and it is canonically isomorphic to the dual space of the tangent space. We
will see that the dimension of (co)tangent of any point on a smooth manifold is the
same as the dimension of the manifold. For a singular point, consider a cusp of
a curve, where there are two linear independent tangent vector on the cusp point,
the dimension of the ”tangent space” of a singular point of a node is larger than 1,
the dimension of a curve.

In algebraic geometry, for a scheme, we can define Zariski cotangent space
in an analogous way and define Zariski tangent space as the dual space of the
Zariski cotangent space.

For a special case, let X be an integral Noetherian normal scheme, for any regular
point p of codimension 1, given f ∈ K(OX,p) ⊂ K(X) and let vp be the valuation
of OX,p, if vp(f) > 0, we say f has a zero of order vp(f) at p; if vp(f) < 0, we
say f has a pole of order −vp(f) at p.

From this view point, normality is a good property. Given a reduced scheme, we
may consider its normalization instead of itself sometimes.(About normalization
see [Vak17], 9.7)

In arithemtic case, given a number field K, the set of valuations on K forms a
scheme, more specifically, an algebraic curve, where each stalk is a DVR (discrete
valuation ring) corresponding to a valuation on K. (Let OK be the ring of integers
of K, SpecOK is the algebraic curve.)

2. Quasicoherent sheaves on schemes

Definition 2.1 (OX -modules). Let (X,OX) be a ringed space, a OX-module F
on X is a sheaf of modules such that Γ(U,F ) is an OX(U)-module for each
open subset U ⊂ X.

Definition 2.2. Let F be a OX -module on a scheme X, then we define the fiber
of F at point p by

F |p := Fp ⊗OX,p
k(p)

Remark 2.3. Let X be a scheme, the category of OX -modules is an abelian category.

Example 2.4 (˜ construction). LetM be an A-module, we define M̃ be an OSpecA-
module by setting

Γ(M̃,D(f)) = Mf

Remark 2.5. Actually, ˜ is an equivalence from the category of A-modules to the
category of quasicoherent sheaves over SpecA.

Definition 2.6 (Locally free sheaves). Let (X,OX) be a ringed space, an OX -
module F is a locally free sheaf of rank n if there exists an open cover {Ui}i∈I
of X such that F |Ui

∼= O⊕nUi
for each i ∈ I.



12 LIANG TONGTONG

Example 2.7 (Vector bundles). Let M be a smooth real manifold, a rank n vector
bundle E → M is a locally free sheaf of rank n on M by viewing E as an Etalé
space of a sheaf. Actually, the notion of vector bundles is equivalent to the notion
of locally free sheaves.

Definition 2.8. Let X be a scheme, then an OX -module F is a quasicoherent

sheaf if for every affine open subset SpecA ⊂ X, FSpecA
∼= M̃ for some A-module

M . Further F is a finite type quasicoherent sheaf if M is a finitely generated
A-module for each SpecA; F is a coherent sheaf if M is a coherent A-module
for each SpecA.

Remark 2.9. We can character a quasicoherent sheaf in this way: for every affine
open subscheme, consider the diagram:

(2)

Γ(SpecA,F ) Γ(SpecAf ,F )

Γ(SpecA,F )f

φ

⊗AAf
α

where φ is the restriction map and α is induced by the universal property of lo-
calization. F is a quasicoherent sheaf if for every affine open subscheme
SpecA, α is an isomorphism.

Proposition 2.1 (Quasicoherentness is an affine local property). Let X be a
scheme, then an OX-module F is a quasicoherent sheaf if there exists an affine

open cover {SpecAi} such that FSpecAi
∼= M̃i.

Sketch proof. Let P be the property of affine open subschemes SpecA of that

FSpecA
∼= M̃ for some A-module. Then check P satisfies two hypothesis in Affine

communication lemma 1.7. �

Example 2.10. Locally free sheaves are quasicoherent sheaves.

Example 2.11 (Sheaf of ideals is a quasicoherent sheaf). Let i : X → Y be a
closed embedding, then we have a surjection on sheaves

OY → i∗OX

Now consider the exact sequence of sheaves

0 −→ IX/Y −→ OY −→ i∗OX −→ 0

where IX/Y is a sheaf of ideals: for each affine open subscheme SpecA of Y , we
have

X ∩ SpecA = V (IX/Y (SpecA))

Moreover,

X ∩ SpecAf = V (IX/Y (SpecAf )) = SpecAf ∩ V (IX/Y (SpecA))

thus we have

IX/Y (SpecAf ) = IX/Y (SpecA)f

which shows that IX/Y is a quasicoherent sheaf. We now define sheaf on ideals
on Y is a quasicoherent sheaf I such that I (SpecA) is an ideal of A for
each affine open subscheme SpecA ⊂ Y .

Actually, closed subschemes of Y one-one correspond to sheaf of ideals on Y .
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In the begining of this section, I mention that quasicoherent sheaf is a kind of
generalization of modules over a ring, so we ecept there will be enough module-like
contruction on the category of quasicoherent sheaf. (Notation: QchX means the
category of quasicoherent sheaves on a scheme X). Then we claim that QchX has
the following structures:

(1) QchX is an abelian category,
(2) QchX is a tensor category.

Definition 2.12 (Direct sum and tensor product). Suppose X is a scheme, F and
sG are in QchX , define F ⊕ G by

Γ(U,F ⊕ G ) := Γ(U,F )⊕ Γ(U,G )

for open subset U ⊂ X; similarly, define F ⊗ G by

Γ(U,F ⊗ G ) := Γ(U,F )⊗ Γ(U,G )

(Note that (M ⊗A N)f ∼= Mf ⊗Af
Nf ).

Remark 2.13. In vector bundles, the direct sum is Whitney sum.

Definition 2.14. Let F and G be two OX -modules onX, the hom sheaf H om(F ,G )
is defined by

Γ(U,H om(F ,G )) = HomOX
(F |U ,G |U )

for any open subset U of X. Clearly, H om(F ,G ) is sheaf of abelian groups. In
particular, the dual of F is H om(F ,OX), denoted by F∨.

Remark 2.15. If F is locally free of rank n and G is locally free of rank m, then
H om(F ,G ) is locally free of rank nm.

Proposition 2.2 (Geometric Nakayama). Suppose X is a scheme and F is a
finite type quasicoherent sheaf. If U ⊂ X is an open neighborhood of p ∈ X and
a1, . . . , an ∈ F (U) so that their images a1|p, . . . , an|p generat the fiber F |p =
Fp ⊗ k(p), then there is an affine open neighbirhood p ∈ SpecA ⊂ U such that:

(1) a1|SpecA, . . . , an|SpecA generate F (SpecA) as an A-module.
(2) For each q ∈ SpecA, a1, . . . , an generate the stalk Fq as an OX,q-module.

Proof. According to the local version of Nakayama’s lemma, a1,p, . . . , an,p generates
Fp. Then we can find an affine open neighborhood SpecB of p such that ai,p can be
represented by a section ai on SpecB for each i, i.e. a1, . . . , an ∈ F (SpecB) = M .
Let N = M/(a1, . . . , an) a finite generated B-module, then the support of N ,
SuppN is a closed set and p /∈ SuppN . Then we can find an f ∈ B such that
p ∈ SpecBf ⊂ SpecB \ SuppN . Let A = Bf , then SpecA is what we need: for
each point q ∈ SpecA, Nq = Mq/(a1,q, . . . , an,q) = 0 and Nf = 0. �

(We use the fact that the support of a finitely generated module is closed)

Proposition 2.3. Suppose F is a finitely presented quasicoherent sheaf on a
scheme X, then if Fp is a free OX,p-module, there exists a neighborhod U of p
such that FU is a free sheaf on U .

Proof. We reduce the case to the affine case. We may assume X = SpecA and

F = M̃ for an A-module M , then Mp is a free Ap for some p ∈ X, then there
exists a1, . . . , an ∈M such that they generate Mp as an Ap-module. Then we have
a linear map

ϕ : An →M
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determined by a1, . . . , an. Then we have two finitely generated A-modules kerϕ
and cokerϕ. Note that Supp(kerϕ) and Supp(cokerϕ) are two closed subsets and p
is in neither one. Hence we can find an f ∈ A such that

p ⊂ SpecAf ⊂ SpecA \ (Supp(kerϕ) ∪ Supp(cokerϕ))

Then for each point q in SpecAf , Mq is a free sheaf and Mf is a free sheaf. �

2.1. Invertible sheaves and line bundles.

Definition 2.16 (Line bundle or invertible sheaf). A locally free sheaf of rank 1
on X is called line bundle or invertibld sheaf.

Proposition 2.4. Let F be an invertible sheaf on scheme X, then

F ⊗F∨ ∼= OX

Definition 2.17 (Picard group). Let X be a scheme, the isomorphic classes of
invertible sheaves forms an abelian group under tensor product. This abelian group
is Picard group on X, denoted by Pic(X).

Example 2.18 (Class groups and Picard groups). Let A be a Dedekind domain,
ClA be its class group. Recall that a fractional ideal a is an A-module in K(A),
the fraction field of A, such that aa ⊂ A for some element a ∈ A. The set of non-
zero fractional ideals of A form a semi-abelian group under multiplication. We get
class group from such semi-abelian group by moduling the subgroup of principal
fractional ideals (ideals of the form rA for some r ∈ K(A)×). We claim that the

Pic(SpecA) ∼= Cl(A)

To show this claim, we need to show the following assertions:
Assertion 1: A frational ideal a of A yields an invertible sheaf on SpecA.

Note that a is an A-module, we just need to consider ã and show it is an invertible
sheaf clearly. We check it stalk by stalk: suppose a = 1

aI for some ideal I of A,

then for a prime p of A, consider ap = 1
aIp. Since A is a Dedekind domain, Ap is a

dvr, in particular a PID, thus Ip = apAp for some ap ∈ Ap and ap =
ap
a Ap, which

is a free Ap-module of rank 1 (ref to Proposition 2.3).
Assertion 2: The invertible sheaf yielded by a principal fractional

ideal is isomorphic to OSpecA. This assertion is straightforword and it can
deduce that two fractional ideals that differ by a principal fractional ideal yield the
same invertible sheaf up to isomorphism.

Assertion 3: Two fractional ideals that yield the same invertible sheaf
up to isomorphism differ by a principal fractional ideal. Let 1

aI and 1
bJ be

two fractional ideals that yield the same invertible sheaf up to isomorphism, then
it means that

1

a
I ∼=

1

b
J

then we have
I ∼=

a

b
J

we conclude that I and J differ by a principal fractional ideal and the assertion
follows.

Remark 2.19. This example shows how we study a arithmetic problem in the lan-
guage of algebraic geometry. We translate arithmetic objects into a topological
objects.
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2.1.1. Line bundles on projective spaces.

Definition 2.20 (Twisting line bundle). Let Pnk be a k-projective space, given an
integer d, we define the twisting line bundle OPn

k
(d) by

Γ(D(f),OPn
k
(d)) = Spec (k[x0, . . . , xn]f )d

for any f ∈ k[x0, . . . , xn]. More specifically

Spec (k[x0, . . . , xn]f )d ={
∑

gi/f
ki | gi is homogenuous and deg gi − ki deg f = d}

=Spec (k[x0, . . . , xn]f (d))0

(recall that given a graded ring S, the d-shift graded ring S(n) of S is defined by
S(n)i := Si+n)

Remark 2.21. We now show that a twisting line bundle is indeed a line bundle:
first it is a quasicoherent sheaf according to the definition clearly, then it is locally
free of rank 1 by considering an affine open cover ∪nj=0D(xj) = Pnk ,

Γ(D(xj),OPn
k
(d)) ={

∑
gi/x

ki
j | gi is homogenuous and deg gi − ki = d}

=xdjk[
x0
xj
, . . . ,

xn
xj

]

which is free of rank 1 on D(xj).

Proposition 2.5. The dimension of the global section

dimk Γ(Pnk ,OPn
k
(d)) =

(
n+ d

n

)

Proof. According to the definition,

Γ(Pnk ,OPn
k
(d)) = {

∑
ai0...ikx

d0
i0
. . . xdkik |

∑
di = d, di ∈ N∗}

and a k-vector space basis is

{xd0i0 . . . x
dk
ik
|
∑

di = d, di ∈ N∗}

Then according to some combination calculation, the cardinary of the basis is
(
n+d
n

)
�

Corollary 2.1. The group homomorphism Z → PicPnk given by n 7→ O(n) is
injective.

Proof. First, it is indeed a group homomorphism: for given two integer m,n,
O(m)⊗ O(n) ∼= O(m+ n) according to Remark 2.21. Then Proposition 2.5 shows
when one of m,n is not less than 0, if m 6= n, then O(m) � O(n), because their
global sections are not isomorphic. For general case, if m 6= n, O(m) ∼= O(n),
then twist a large N such that m + N > 0 and n + N > 0, then O(m + N) ∼=
O(m)⊗ O(N) ∼= O(n)⊗ O(N) ∼= O(n+N), contradiction. �

Proposition 2.6. Every invertible sheaf on P1n is of the form O(n) for some integer
n.
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Proof. Note that P1k = Projk[x, y] and P1k = Spec k[x/y] ∪ Spec k[y/x]. Any invert-

ible sheaf on A1
k corresponds to M̃ on A1

k and M̃ is torsion free of rank 1. According
to the classification of finitely generated modules over a PID, M is a free module.
Hence let F be an invertible sheaf on P1k, F |Spec k[x/y] and F |Spec k[y/x] are trivial
line bundles i.e. F |Spec k[x/y] ∼= OSpec k[x/y] and F |Spec k[y/x] ∼= OSpec k[y/x]. Then
we have the exact sequence of sheaves

0 −→ F −→ OSpec k[x/y] ⊕ OSpec k[y/x] −→ OSpec k[x/y,y/x]

and the transition function on Spec k[x/y, y/x] determines the cocycle condition.
The cocycle condition determines the invertible sheaf. Hence we just need to classify
transition functions.

According to the definition of cocycle condition, the transition function corre-
sponds an invertible element of k[x/y, y/x], i.e. (y/x)n for some integer n, up to a
scalar mutiplication of k.

Claim that if the transition function is

k[x/y] k[y/x]

×(y/x)n

×(x/y)n

then F ∼= O(n). It is clear if we give a trivializations of O(n), its transition function
is the same as the above diagram. (see Remark 2.21 and consider the trivalization
by sending xdj to 1.) �

Remark 2.22. Actually, this proposition is true for Pmk , but we need to use the
language of divisor to show it.

2.2. Divisors. In the this subsection, we just consider Noetherian scheme
(All the schemes I mention are Noetherian and normal).

Definition 2.23. A Weil divisor on a scheme X is a formal Z linear combination
of codimension 1 irreducible closed subsets of X. We can write it as the form∑

Y⊂X, codimXY=1

nY [Y ]

where nY are integers. Or we may consider [Y ] as the generic point of Y . The
abelian group of Weil divisors on X is denoted by WeilX.

We say [Y ] is an irreducible divisor. We say a Weil divisor D =
∑
nY [Y ] is

effective if all nY > 0, and we denote it D > 0. For Weil divisors D1 and D2,
we say D1 > D2 if D1 − D2 > 0. The support of a Divisor D is ∪nY 6=Y . If
U ⊂ X is an open set, then we define the restriction map WeilX → WeilU by∑
nY [Y ] 7→

∑
Y ∩U 6=∅ nY [Y ∩ U ].

Remark 2.24. If X is a regular curve, then a Weil divisor on X is a Z linear
combination of closed points of X.

Now we suppose X is regular in codimension 1 (or a Noetherian normal scheme,
see Proposition 1.12), then the stalks on dim 1 generic points are DVR i.e. every
codimension 1 irreducible closed subset Y corresponds to a valuation
valY of the function field.
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Definition 2.25 (Principal divisor). Let X be a Noetherian normal scheme, f be a
rational function (see Remark 1.26) on X i.e an element in the function field K(X),
then a principal divisor is

divf =
∑
Y

valY (f)[Y ]

where valY is the valuation corresponding to Y . We also call divf the divisor
of zeros and poles of a rational function f . (see Geometric interpretation of
regularity 1.4.4.)

In other words, a Weil divisor D is principal if there exists a rational
function f such that D = divf . We say D is locally principal if there exists
an open cover {Ui} of X such that D|Ui

is a principal divisor.

Remark 2.26. divf is indeed a Weil divisor i.e. a finite sum of non-zero items. To
show this, we reduce it to affine case that X = SpecA and f = g/h for g/h ∈ A,
then there are only finite prime ideals of A containing f or g.

Remark 2.27. If f is a regular function (an element in OX(X)), then divf > 0; if
f is an invertible regular function, then divf = 0.

Example 2.28. Let A be a Dedkind domain, f ∈ K(A) and (f) is a fractional
ideal, then we have a unique decomoposition of prime ideals

(f) = pe11 . . . penn

where pi is a prime ideal and ei is an integer for each i. Then

divf =
∑

ei[pi]

Example 2.29. On A1
k, div(x3/(x− 1)) = 3[(x)]− [(x+ 1)], which means it has a

simple pole at [(x+ 1)] and an order 3 zero at [(x)].
If k = C, A1

C ∼ C and we view it from the view point of complex analysis, the
notions of rational functions, zeros and poles make sense in complex analysis.

According to the property of valuation, we have

divfg = divf + divg

then we deduce that principal divisors form a subgroup of WeilX. We denote the
subgroup of principal divisors by Prin(X). Hence we have a group homomor-
phism

div : K(X)∗ → Prin(X)

Similarly, we denote the subgroup of locally principal Weil divisors by
LocPrin(X).

Definition 2.30. We define the Weil divisor class group Cl(X) on a Noetherian
normal scheme X by Cl(X) = Weil(X)/Prin(X).

Remark 2.31. We have an exact sequence

0 OX(X)∗ K(X)∗ Prin(X) Weil(X) Cl(X) 0div
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In Example 2.18, we see that the class group of a Dedkind domain A is the same
as the Picard group of SpecA. By Example 2.28 and the exact sequence in Remark
2.31, we easily find that the Weil divisor class group of SpecA is the same as the
class group of A. Next we will show the connection between divisors and invertible
sheaves to find the connection between the Weil divisor class group and the Picard
group of invertible sheaves.

Definition 2.32. Let X be a Noetherian normal scheme, D is a Weil divisor on
X, then we define a sheaf OX(D) by

Γ(U,OX(D)) := {t ∈ K(X)∗ | div|U (t) +D|U > 0} ∪ 0

where div|U means we regard t as a rational function on U and take the valuations
on U .

Remark 2.33. OX(D1)⊗ O(D2) ∼= OX(D1 +D2)

Proposition 2.7. Assume the assumption in Definition 2.32, O(D) is a quasico-
herent sheaf.

Proof. We just need to show for any affine open subset SpecA ⊂ X, we have

Γ(SpecA,OX(D))f ∼= Γ(SpecAf ,OX(D)).

Note that for any n ⊂ Z, div|SpecAf
(fn) = 0, thus div|SpecAf

(t) = div|SpecAf
(t/fn).

Then Γ(SpecA,OX(D))f ∼= Γ(SpecAf ,OX(D)) naturally. �

Proposition 2.8. Suppose D is a locally principal divisor, then O(D) is an in-
vertibld sheaf.

Proof. It is obvious. We just need to check Definition 2.25 and process it locally. �

Example 2.34. Let D = [(x)]− 2[(x− 1)] be a Weil divisor on A1, then the global
section is

Γ(A1
k,OA1

k
(D)) =

x

(x− 1)2
k[x]

Next we use this notion to show the relation between invertible sheaves and Weil
divisors.

Proposition 2.9. Let L be an invertible sheaf on a Noetherian normal scheme
X, s be a non-zero rational section of L i.e. s ∈ Γ(U,L ) for an open dense subset
U ⊂ X. Applying trivialization on s, divs makes sense and is a Weil divisor, then
we have

O(divs) ∼= L

Proof. Let {Ui} be an affine open cover of X such that L |Ui
∼= OUi

. We just need
to check that O(divs)|Ui

∼= OUi for each Ui. Further, suppose Ui = SpecAi, since
they are all quasicoherent sheaves, it remains to show

Γ(Ui,OUi
(divs)) ∼= Ai

where we may identify s with a rational function on Ui i.e. s = f/g ∈ K(A).
Obviously, Γ(Ui,OUi

(divf/g)) ∼= f/gAi and f/gAi ∼= Ai as Ai-modules. �

In this proof, we can extend div from K(X)∗ to {(L , s)}/iso. where L is an
invertible sheaf and s is a rational section of L . Moreover div : {(L , s)}/iso. →
WeilX is an injective. Because if div(L , s) = 0, then s is a global section and
×s : OX → L is an isomorphism.
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Proposition 2.10. Suppose X is a Noetherian normal scheme, the map

div : {(L , s)}/iso.→ LocPrin(X)

is an isomorphism.

Proof. We have shown div is injective. It suffices to show it is surjective.
Note that an invertible sheaf is the same notion as the line bundle. Gluing all

the trivalizations and charts of the invertible sheaf together, we have a map

σ : K(X)→ {rational sections of L }.

In detials, let {(Ui = SpecAi, φi)} be an atlas of the bundle charts , where L |Ui
∼=

OUi and φi : Ai → L (Ui) is an isomorphism, then for a rational function f on X,
we just consider φi(f) for each bundle chart that are contained in the domain of f
and glue φi(f) to get a unique rational section of L by sheaf axioms.

We now construct a map from LocPrin(X) to {(L , s)}/iso. by

D 7→ (O(D), σ(1))

where the target of σ is the set of rational sections of O(D). By checking definition,
we claim divσ(1) = D. To show the claim, we just consider it affine-locally and we
may assume D is a principal divisor on an affine scheme SpecA. Let D = divf ,
then σ : A→ fA (recall Example 2.34) and σ(1) = f in particular. �

Corollary 2.2. Let X be a Noetherian normal scheme, then Pic(X) ⊂ Cl(X).

We just consider the following diagram:

(3)

{(L , s)}/iso. LocPrin(X) Weil(X)

Pic(X) = {L }/iso. LocPrin(X)/Prin(X) Cl(X)

∼

/Prin(X) /Prin(X)

∼

Now the question is: when do Pic(X) ∼= Cl(X)?

Proposition 2.11. If X is Noetherian and factorial, then for any Weil divisor D,
OX(D) is invertible and hence the map Pic(X)→ Cl(X) is an isomorphism.

If X is Noetherian and factorial, in particular smooth(though I do not give the
definition of smoothness in this survey, claim that if X is a regular scheme over a
perfect field k, then X is a smooth scheme over k), then Pic(X) → Cl(X) and we
define:

Definition 2.35. For each L ∈ Pic(X), we define the first Chern class of L to
be

c1(L ) = [D]

where [D] ∈ Cl(X) such that OX(D) ∼= L . In other words, c1 : Pic(X)→ Cl(X) is
the inverse homormophism of Cl(X)→ Pic(X) by D 7→ OX(D).

Excision sequence for class groups: Let X be a Noetherian normal scheme,
let Z be a codimension 1 irreducible closed set of X and i : Z ↪→ X be the closed
embedding. Then we have an exact sequence

(4) 0 Z Weil(X) Weil(X − Z) 0
17→[Z] |X−Z
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Then we quotient then by the subgroups of principal divisors to get the exicision
sequence for class groups

(5) Z Cl(X) Cl(X − Z) 0
1 7→[Z]

We can use the excision sequence of divisor to calculate some examples.

Example 2.36. First, Cl(An1 ) = 0 because k[x1, . . . , xn] is a UFD and the class
group is trivial clearly. Then we let X = Pkn, Z = V (x0) the hyperplane cut by x0
and X − Z ∼= Ank . Now consider the excision sequence of class groups:

Z Cl(Pnk ) Cl(Ank ) 0
17→[Z]

Then we get a surjection Z → Cl(Pnk ) i.e. Cl(X) is generated by [Z]. Note that
O([Z]) ∼= O(1) according to Remark 2.21. Thus Pic(Pnk ) ∼= Cl(Pnk ) ∼= Z.

Hence for each invertible sheaf L on Pnk , L ) ∼= O(d) for a unique integer d, we
say the degree of L is d. In particular, if L = O(D) for some divisor D on Pnk ,
we say the degree of D is d.

Example 2.37. Suppose that Y is a closed subscheme of Pkn cut by a homogenuous
irreducible polynomial of degree d, then accirding to the excision sequence of class
groups

Z Cl(Pnk ) Cl(Pnk − Y ) 0
1 7→[Y ]

and note that O([Y ]) = O(d), hence Cl(Pnk − Y ) = Z/(d).

2.3. Algebraic cycles and Chow groups. We say a closed subscheme X of a
scheme Y is locally principal if there is an affine open cover {Ui} = SpecAi of Y
such thatX∩Ui = V (si) for some si ∈ Ai. If for each i, si is a not a zerodivisor, then
we called the locally principal closed subsecheme X efferctive Cartier divisor.
Now we consider the sheaf of ideals IX/Y of the effective Cartier divisor:

0 −→ IX/Y −→ OY −→ i∗OX −→ 0

when restrict on the SpecAi, we get

0 −→ Ai
×si−→ Ai −→ Ai/(si) −→ 0

Since si is not a zero divisor, the map ×si is injective. Then we see the sheaf
of ideals associated to the effective Cartier divisor is an invertible sheaf.
Conversely, an invertible sheaf of ideal will determine an effective Cartier divisor.
Thus actually, the concept of effective Cartier divisors is the same as the
concept of invertible sheaves of ideals. More specifically, according to Krull’s
principal ideal theorem, an effective Cartier divisor X is of codimension 1 and it is
indeed a Weil divisor on X. By this, we claim that we have an exact sequence

0 −→ OY (−X)→ OY → i∗OX −→ 0

and so the invertible sheaf of ideals correspoinding to X is OY (−X) actually.
In this section, we show that we can descirbe a phenomenon from two perspec-

tives, where one is from closed subschemes and the other is from quasicoherent
sheaves and these two viewpoints give the same result. Informally speaking, the
geometric data of quasicoherent sheaves on Y is almost the same as the
data of closed subschemes of Y . In the case of algebraic topology, de Rham
theorem and Ṕoincare duality show that the relation should be a kind of duality.
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We believe that there will be analogous way of such duality in the world of algebraic
geometry. Further, we may consider the algebraic structures on good quasicoherent
sheaves (such as invertible sheaves) and good closed subschemes (such as effective
Cartier divisors or closed subvarieties), then we need the notions of Grothendieck
K-ring and Chow ring, and Grothendieck-Riemann-Roch theorem shows the con-
nection between them. Next we show that how to use algebraic cycles and Chow
group to define class group.

Definition 2.38. Let X be a Noetherian normal scheme. The group of n-cycles,
denoted by Zn(X), is the free abelian group generated by the n-dimensional irre-
ducible subvarieties of X. For each n-dimensional subvariety V ⊂ X, we denote by
[V ] the corresponding element of Zn(X). A n-cycle α is an element in Zn(X), and
an algebraic cycle α on X is an element of abelian group ⊕nZn(X).

Definition 2.39. An algebraic cycle α on X is rationally equivalent to zero,
written as α ∼ 0, if there are irreducible subvarieties V1, . . . , Vm of X and a rational
function fi on each Vi such that

α =

m∑
i=1

div(fi)

where div(fi) is a Weil divisor on X and is a Z-linear combination of codimension
1 irreducible closed subsets of Vi (at the same time, they are irreducible subvarities
of X as well).

Remark 2.40. Algebraic cycles that are rationally equivalent 0 forms a group clearly
and we denote the subgroup of k-cycles that are rationally equivalent to 0 by Bk(X).

Definition 2.41 (Chow group). The Chow group of k-cycles on X, denoted by
An(X), is

An(X) := Zn(X)/Bn(X)

The direct sum
A∗(X) =

⊕
n

An(X)

is called the Chow group of X.

Next we show the relation between Chow groups and class groups:

Example 2.42. If X is a Noetherian normal k-variety and dim(X) = n, then
An−1 ∼= Cl(X).

Actually, Chow groups is an analogy to singular homology groups in algebraic
topology. Informally, we may compare a k-cycle on a scheme X with a k-simplex
in a manifold (or generally, topological space) M . However, the given Definition
2.39 of rational equivalence is quit strange if we consider it in algebraic topology.
Now we given an equivalent definition of rational equivalence, which makes us think
about more algebraic topology.

Definition 2.43. A cycle α ∈ Zk(X) is rationally equivalent to zero iff there exists
k+1 dimensional irreducible varieties W1, . . . ,Wm of X×P1 such that the projective
maps pi : Wi → P1 are dominant and

α =

m∑
i=1

(p−1i (0)− p−1i (∞))
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where p−1i (0) and p−1i (∞) are scheme-theoretic fiber; 0 = [0 : 1] ∈ P1 and ∞ = [1 :
0] ∈ P1.

The proof of the equivalence between Definition 2.39 and Definition 2.43 is in
[Ful98],1.6.

Remark 2.44. Informally speaking, we may view it as a kind of homotopy parametrized
by the projective line (in classical algebraic geometry, homotopy is parametrized by
the real line R). Specifically, given two k-dimensional irreducible subvarieties V0, V1
of X, we say [V0] is rational equivalent to [V1], denoted by V0 ∼ V1 if [V0]− [V1] ∼ 0,
and according to Definition 2.43, V0 ∼ V1 if and only if there is a k + 1-irreducible
subvariety W of X × P1 such that V0 is the fiber of 0 under the projection to P1
and V1 is the fiber of ∞. In this setup, we may regard W as a kind of ”homotopy
cylinder” between V0 and V1.

2.4. Pushforward and Pullback. In this subsection, we just show some facts
about pullback and pushforward.

2.4.1. Pushforward. Let π : SpecA→ SpecB be a morphism of affine schemes and

suppose M is an A-module and M̃ is a quasicoherent sheaf on A. Note that MB is

a B-module via ring morphism π# : B → A. Then the pushforward M̃ via π is

π∗M̃ ∼= M̃B

In particular, π∗M̃ is quasicoherent. Moreover, suppose π : X → Y is an affine
morphism, F is a quasicoherent sheaf on X, then π∗F is a quasicoherent sheaf on
Y that is defined affine-locally.

Proposition 2.12. If π : X → Y is an affine morphism, π∗ is an exact functor
QchX → QchY .

Theorem 2.45. Suppose π : X → Y is a quasicompact quasiseparated morphism
and F is a quasicoherent sheaf on X, then π∗F is a quasicoherent sheaf on Y.

Combine Qcqs lemma 1.12 and Remark 2.9, then the proof follows.

2.4.2. Pullback. Suppose φ : X → Y is a morphism of scheme, and G is a quasico-
herent sheaf on Y , then the pullback of G under π is

π∗G := π−1G ⊗π−1OY
OX

Note that a morphism a scheme contains the data π−1OY → OX . Specifically, let
SpecA ⊂ X and SpecB ⊂ Y be two affine open subschemes such that π(SpecA) ⊂
SpecB, and G |SpecB = Ñ for a B-module N , then

Γ(SpecA, π∗G ) = N ⊗B A

The pullback of a quasicoherent sheaf is still a quasicoherent sheaf. Further, φ∗ is
a covariant functor QchY → QchX .

Example 2.46. Let X be a scheme, p ∈ X and F be a quasicoherent sheaf on X.
We may identify p with an inclusion i : Spec k(p)→ X by sending the single point
Spec k(p) to p. Then i∗F = F |p (recall Definition 2.2) and this is why we call F |p
the fiber of F at point p.
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Proposition 2.13. Let π : X → Y be a quasicompact quasiseparated morphism,
(π∗, π∗) is an adjoint pair: there is a canonical isomorphism

HomOX
(π∗G ,F ) ∼= HomOY

(G , π∗F )

Corollary 2.3. Suppose i : U → X is an open embedding, F is an OX-module and
E , then there is bijection

HomOU
(F |U ,E )↔ HomOX

(F , i∗E )

There are some other properties of pullback: suppose π : X → Y is a morphism
of schemes and G is a quasicoherent sheaf on Y .

(1) If π(p) = q, then the pullbucak induced an isomorphism

π∗Gp ∼= Gq ⊗OY,q
OX,p

(2) Let G ′ be another quasicoherent sheaf on Y

π∗(G ⊗OY
G ′) ∼= π∗G ⊗OX

π∗G ′

(3) If π(p) = q, then

(π∗G )|p ∼= G |q ⊗k(q) k(p)

2.5. Line bundles and maps to projective schemes.

Definition 2.47. Let X be a scheme and F be an OX -module, then we say F is
globally generated if there exists a surjection⊕

I

OX → F

where I is an index set. If I is finite, then we say F is finitely globally generated.
An equivalent definition is that there exists a family of global sections {si}i∈I in

F (X) such that Fp is generated by {si,p}i∈I for each point p ∈ X.
In particular, we say F is globally generated at point p ∈ X, when Fp is

generated by global sections of F .

Note that in general case, quasicoherent sheaf may not be globally generated,
for example O(−1) on Pnk , due to its trivial global section.

Proposition 2.14. Suppose F is a finite-type quasicoherent sheaf, then F is glob-
ally generated at p if and only the fiber of F is generated by global sections at p
i.e. the map from global sections yo the fiber Fp/mFp is surjective, where m is the
maximal ideal of OX,p.

Applying geometric Nakayama’lemma, the result follows.

Corollary 2.4. An invertible sheaf L on X is globally generated if and only if for
any point p ∈ X, there is a global section of L not vanishing at p.

The ”only if” part is obvious. Conversely, if there is a global section of F does
not vanish at p, then the pullback this global section does not vanish at the fiber
of F at p. Since the fiber of F is a vector space of dimension 1, then the fiber of
F at each point p is generated by global sections and by previous proposition, the
result follows.

Definition 2.48. If L is an invertible sheaf on a scheme, then those points where
L vanishes are called base points of L . Note that the set of base points is a
closed subset and we called it base point locus.
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The main reason we need this definition is due to the following proposition:

Proposition 2.15. Suppose X is a k-scheme, and s0, . . . , sn are global sections of
a line bundle L on X without common zeros, then these global sections determine
a morphism X → Pnk .

Proof. Sketch proof If U is an open bundle chart of L , then apply trivialization on
s0, . . . , sn, si are functions on U i.e. si ∈ Hom(U,A1

k), then we have φ|U : U → Pnk
defined by

x 7→ [s0(x), . . . , sn(x)]

Since the trivialization and transition functions are compatible, for any two open
bundle charts, previous definition of the morphisms agree on the intersection. Then
we can glue these morphisms into a morphism X → Pnk . �

Definition 2.49 (Linear series). Suppose X is a k-scheme and V is a finite dimen-
sional k dimensional with a linear map λ : V → Γ(X,F ), then we usually simply
denote it by V and call it linear series on X. Similarly, we can define base point
for linear series.

If U ⊂ X is base point free for an n+ 1 linear series, then we have a morphism
U → Pnk .

Theorem 2.50. For a fixed scheme X, morphisms X → Pnk are in bijection with
the data (L , s0, . . . , sn), where L is a line bundle on X and s0, . . . , sn are global
sections of L with no common zeros, up to isomorphism of these data. More
specifically, given a morphism π : X → Pnk , the data (π∗O(1), π∗x0, . . . , π

∗xn) is the
corresponding line bundle.

Remark 2.51. This theorem shows that Pnk is the moduli space of line bundle L
with n+ 1 sections without common zeros.

Next we show some application of this theorem.

Example 2.52. The automorphism group Aut(Pnk ) is PgL(n+ 1, k) called projec-
tive general linear group, where elements are (n + 1) × (n + 1) invertible matrix
modulo scalar.

Proof. For an element in PgL(n, k), the matrix determines an automorphism on
Pnk clearly. We just need to show given any automorphism φ, it is an element in
PgL(n, k). First, φ∗ is an automorphism on Pic(Pnk ) and according to Example
2.36, Pic(Pnk ) is generated by O(1) or O(−1), thus φ∗O(1) = O(1) or O(−1).
Since O(−1) has no non-trivial global sections, we must have φ∗O(1) = O(1). Let
si = φ∗(xi) and si = aijxj and (aij) forms an invertible (n + 1) × (n + 1) matrix
A. Then A determines an isomorphism between graded rings

k[x0, . . . , xn]→ k[s0, . . . , sn]

and this induced

Proj(k[s0, . . . , sn])→ Proj(k[x0, . . . , xn])

which is φ exactly due to the previous theorem. �

Definition 2.53. Suppose π : X → SpecA is a proper morphism and L is an
invertible sheaf on X. We say L is very ample over A if there exists a finite
generated graded ring S∗ over A generated in degree 1 such that X ∼= ProjS∗ and
L ∼= OProjS∗(1).
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Proposition 2.16. Suppose π : X → SpecA is proper and L is an invertible sheaf
on X, then L is very ample if and only if there exists a finite number of global
sections s0, . . . , sn of L , with no common zeros such that the induced morphism

X → PnA
is a closed embedding.

Theorem 2.54. Suppose π : X → SpecA is proper and L is an invertible sheaf
on X. The following are equivalent

(a) For some N > 0, L ⊗N is very ample over A.
(a’) For all n� 0, L ⊗n is very ample over A.
(b) For all finite type quasicoherent sheaves F , there is an n0 > 0, such that

for all n > n0, F⊗n is globally generated.
(c) As f runs over the global sections of F⊗n (n > 0), the open subsets Xf =
{p ∈ X | f(p) 6= 0} form a base for the topology of X.

3. Cohomology, arithmetic genus and Riemann-Roch theorem

In above sections, we see that a plenty of geometric information of a scheme X
can be presented in QchX and QchX is an abelian category, which allows us to use
method of homological algebra to get more algebraic invariants.

In this section, we will construct a sheaf cohomology, (̆C)ech cohomology, on
QchX and algebraic invariants, arithmetic genus.

3.1. C̆ech cohomology.

Definition 3.1. Suppose X is a quasicompact and separated scheme, F is a
quasicoherent sheaf on X and U = {Ui}ni=1 is a finite collection of affine opne sets.
Let I be a subset of {1, . . . , n}, UI = ∩i∈IUi and denote the cardinality of I by |I|,
then we define the C̆ech complex

(6) 0→
∏
|I|=1

F (UI)→ · · · →
∏
|I|=i

F (UI)→
∏
|I|=i+1

F (UI)→ . . .

The maps are defined as follows. The map from F (UI) → F (UJ) is 0 unless
J = I ∪ {i} for some i. If j is the kth element of J , then the map is (−1)k−1

times the restriction map resUI ,UJ
. Then the sequence in (6) is indeed a complex

according to the sheaf axiom.
Define Hi

U (X,F ) to be the ith cohomology group of the C̆ech complex (6).

Remark 3.2. According to sheaf axioms, H0(X,F ) = Γ(X,F ).

Theorem 3.3. The higher C̆ech cohomology Hi
U (X,F ) of an affine scheme van-

ishes for any affine cover U , i > 0 and quasicoherent sheaf F .

Proof. See [Vak17] 18.2.4 �

Theorem 3.4. Assume the assumption in Definition 3.1, Hi
U (X,F ) is inde-

pendent of the choice of finite cover {Ui}. More precisely, for any two covers
{Ui} ⊂ {Vi}, the maps

Hi
{Vi}(X,F )→ Hi

{Ui}(X,F )

induced by the natural map of C̆ech complexes (6) is an isomorphism.
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Proof. See [Vak17] 18.2.2 �

Definition 3.5. Following the assumption and notations in previous theorem, we
define the C̆ech cohomology group Hi(X,F ) := Hi

U (X,F )

Suppose X is a separated and quasicompact A-scheme, then C̆ech cohomology
groups satisfy the following properties

(1) Each Hi is a covariant functor QchX → ModA.
(2) The functor H0 is Γ.
(3) If 0→ F → G →H → 0 is an exact sequence of quasicoherent sheaves on

X, then we have a long exact sequence of C̆ech cohomology groups

Hi−1(X,H ) Hi(X,F ) Hi(X,G ) Hi(X,H )

Hi+1(X,F ) Hi+1(X,G ) Hi+1(X,H ) Hi+2(X,F )

δ

where we call such δ : Hi(X,H ) → Hi+1(X,F ) connecting homomor-
phism.

(4) If π : X → Y is a morphism of A-schemes, then there is a natural morphism

Hi(Y, π∗F )→ Hi(X,F )

extending Γ(Y, π∗F )→ Γ(X,F ).
(5) If π : X → Y is an affine morphism of A-schemes, the morphisms in (4) are

isomorphisms.
(6) If X can be covered by n affine open sets, then Hi(X,F ) = 0 for i > n for

all F .

Theorem 3.6. For any coherent sheaf F on a projective A-scheme where A is
Noetherian, Hi(X,F ) is a finitely generated A-module.

Proof. See [Vak17] 18.1.4. �

Theorem 3.7. Suppose X is a projective k-scheme, and F is a quasicoherent sheaf
on X. Then Hi(X,F ) = 0 for i > dimX.

3.2. Arithmetic genus and Riemann-Roch theorem. Let X be a separated
quasicompact k-scheme and F is a quasicoherent sheaf onX, we denote hi(X,F ) :=
dimk Hi(X,F ).

Suppose F is a coherent sheaf on a projective k-scheme X, then hi(F ) is finite
according to Theorem 3.6. Define the Euler characteristic of F by

χ(X,F ) :=

dimX∑
i=0

(−1)ihi(X,F )

The Euler characteristic is an important algebraic invariant.

Proposition 3.1. Suppose 0 → F → G → H → 0 is an exact sequence of
coherent sheaves on a projective k-scheme X, then χ(X,G ) = χ(X,F )+χ(X,H ).

Sketch proof. We just need to consider the associated long exact sequence of coho-
mology groups, then the result follows. �
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Corollary 3.1. Suppose there is an exact sequence of coherent sheaves

0→ F1 → F2 → F3 → · · · → Fn → 0

then
n∑
i=1

(−1)iχ(X,Fi) = 0

Definition 3.8. We define the arithmetic genus of a scheme X as 1−χ(X,OX),
denoted by pa(X).

Remark 3.9. Recall that we can compute topological genus by Euler characteristic,
the arithmetic case is an analgous case and surprisely, if we take X as a C-curve,
then the set of C-valued points X(C) is a compact Riemannian surface, and the
topological genus of X(C) is the same as arthmetic genus of X.

3.2.1. Riemann-Roch theorem for line bundles on regular projective curves. Sup-
pose D :=

∑
p∈C ap[p] is a divisor on a regular projective curve C over a field k

(where ap ∈ Z and p is a closed point). Define the degree of D by

degD :=
∑

ap deg p

where deg p is the degree of the field extension of the residue field over k.

Theorem 3.10 (Riemann-Roch). Assume the above assumption, then

χ(X,OC(D)) = degD + χ(C,OC)

Proof. When degD = 0, this is obviously ture. Argue by induction, we just need
to show

χ(C,OC(D)) = deg p+ χ(X,OC(D − p))
Claim the following sequence is exact (recall Example 2.46) :

0 −→ OC(−p) −→ OC −→ OC |p −→ 0

We check the exactness stalk by stalk and we may assume take an affine open
neighborhood of each point. When q 6= p ∈ C, then OC |p,q = 0 according to the
definition and by take an affine open neighborhood U of q that does not contain p,
hence OC(−p)|U ∼= OU then OC(−p)q ∼= OC,q clearly. If we consider the stalk at p,
let mp be the maximal ideal of OC , then according to Definiton 2.32, OC(−p)p = mp.
Thus the result follows. Actually, a direct way to show its exactness is to
view OC(−p) as the sheaf of ideals for closed subscheme p.

Now we tensor the exact sequence by OC(D), since OC(D) is locally free, we get
another short exact sequence

0 −→ OC(−p)⊗OC
OC(D) −→ OC ⊗OC

OC(D) −→ OC |p ⊗OC
OC(D) −→ 0

Then according to Proposition 3.1, we have

χ(X,OC(D)) = χ(X,OC(D − p)) + χ(X,OC |p ⊗OC
OC(D))

Note that OC |p ⊗OC
OC(D) vanishes at higher cohomology groups, because OC |p

only support at p and

H0(X,OC |p ⊗OC
OC(D)) = H0(p,OC |p ⊗OC

OC(D)) = degk k(p)⊗k k = [k(p) : k]

Then it is done. �
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Remark 3.11. As every invertible sheaf L is of the form OC(D) fro some D (recall
Corollary 2.2, the last paragraph of Example 2.36).

Remark 3.12. There is another equivalent statement of Riemann-Roch theorem

h0(C,L )− h1(C,L ) = deg L − pa(C) + 1

and the degree of L is χ(C,L )− χ(C,OC).
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