NOTE ON COMMUTATIVE ALGEBRA

LIANG TONGTONG

Abstract. This is a short note on commutative algebra.

Contents

1. Going-up and Going-down 1
2. Dimension theory 5
3. Geometric viewpoint of primary decomposition 6
4. Regularity and DVRs 7
5. Decomposition and Dedekind domain 10
6. Divisor on curves 12
References 14

1. Going-up and Going-down

Theorem 1.1. Suppose $f: A \hookrightarrow B$ is an integral extension, then the induced scheme morphism $f^{*}: \operatorname{Spec} B \rightarrow \operatorname{Spec} A$ is surjective.

Theorem 1.2 (Going-up). Let A, B be two integral domain and $f: A \hookrightarrow B$ be an integral extension. For any two prime ideals $\mathfrak{p}_{1} \subset \mathfrak{p}_{2}$ in A and a prime ideal \mathfrak{q}_{1} in B such that $\mathfrak{q}_{1} \cap A=\mathfrak{p}_{1}$, then there exists \mathfrak{q}_{2} in B such that $\mathfrak{q}_{2} \cap A=\mathfrak{p}_{2}$.

Going-down property: Let $A \hookrightarrow B$ be an integral extension, $\mathfrak{p}_{2} \subset \mathfrak{p}_{1} \subset A$ and $\mathfrak{q}_{1} \subset B$ be prime ideals such that $\mathfrak{p}_{1} \cap A=\mathfrak{p}_{1}$, then there exists $\mathfrak{q}_{2} \in \operatorname{Spec} B$ such that $\mathfrak{q}_{2} \cap A=\mathfrak{p}_{2}$.

Theorem 1.3 (Going-down). When $A \subset B$ are rings and A is integrally closed, then the going-down property holds and the induced morphism $f^{*}: \operatorname{Spec} B \rightarrow \operatorname{Spec} A$ is an open map.

To prove this theorem, we need several lemmas.
Lemma 1.4 (Heuristic). Let $A \subset B$ be rings such that B is integral over B, then for any prime ideal $\mathfrak{p} \subset B$ there exists a prime ideal \mathfrak{P} in B such that $\mathfrak{P} \cap A=\mathfrak{p}$.

Proof. First, we do localization with respect to \mathfrak{p} and $A_{\mathfrak{p}} \rightarrow B_{\mathfrak{p}}$ is still an integral extension. If there exists a prime ideal $\mathfrak{P} B_{\mathfrak{p}}$ in $B_{\mathfrak{p}}$ over $\mathfrak{p} A_{\mathfrak{p}}$, then $\mathfrak{P}=\mathfrak{P} B_{\mathfrak{p}} \cap B$ satifies that $\mathfrak{P} \cap A=\mathfrak{p}$.

[^0]Hence the problem is reduced to local case that we may assume A is a local ring with maximal ideal \mathfrak{m}. Next we just need to find a prime ideal \mathfrak{n} in B such that $\mathfrak{n} \cap A=\mathfrak{m}$. A good candidate for such \mathfrak{n} is the maximal ideal in B that contains $\mathfrak{m} B$, but we still need to show that $\mathfrak{m} B$ is a proper ideal in B.

Argue by contradiction to show that $\mathfrak{m} B$ is a proper ideal in B. If $\mathfrak{m} B=B$, then there exists $b_{1}, \ldots, b_{n} \in B$ and $m_{1}, \ldots, m_{n} \in \mathfrak{m}$ such that

$$
\sum m_{i} b_{i}=1
$$

Then we have a subsring $A\left[b_{1}, \ldots, b_{n}\right]$. Note that all b_{i} is integral over A, then $M=A\left[b_{1}, \ldots, b_{n}\right]$ is a finitely generated A-module and by previous assumption, $M \subset \mathfrak{m} M$. By Nakayama's lemma, $M=0$, contradiction.

Hence there exists a maximal ideal $\mathfrak{n} \subset B$ such that \mathfrak{n} is over \mathfrak{m}. Claim that $\mathfrak{n} \cap A$ is a maximal ideal in A, because B / \mathfrak{n} is a field integral over $A /(\mathfrak{n} \cap A)$, for any non-zero element $x \in A /(\mathfrak{n} \cap A), x^{-1} \in B$ and x^{-1} is integral over $A /(\mathfrak{n} \cap A)$ i.e there exists a monic polynomial with $A /(\mathfrak{n} \cap A)$ such that

$$
x^{-n}+a_{1} x^{-n+1}+\cdots+a_{n}=0
$$

Then we have

$$
x^{-1}=-\left(a_{n} x^{n-1}+\cdots+a_{1}\right)
$$

which shows that $A /(\mathfrak{n} \cap A)$ is a field. Here we finish the proof.
Lemma 1.5. Let $A \subset B$ be integral domains, for given \mathfrak{q}_{1} in $\operatorname{Spec} B$ and \mathfrak{p}_{1} in $\operatorname{Spec} A$, then there exists a minimal prime ideal \mathfrak{q} of $\operatorname{Spec} B$ such that $\mathfrak{q} \cap A$ is a minimal prime ideal in $\operatorname{Spec} A$.

This is a straight result from Heuristic lemma. Hence we may assume A, B are integral domains. However, the key problem is that we have guaranteed that such $\mathfrak{q} \subset \mathfrak{q}_{1}$ yet and that we will do next.

Next we show that the condition that A is integrally closed is essential.
Example 1.6. Let $k=\mathbb{C}, B=k[x, y]$ and $A=\{f \in B \mid f(0,0)=f(0,1)\}$. The picture of Spec B is the plane k^{2} and we get $\operatorname{Spec} A$ by gluing $P_{1}=(0,0)$ and $P_{2}=(0,1)$ in k^{2} to be one point P and the induced map $\operatorname{Spec} B \rightarrow \operatorname{Spec} A$ is the quotient map. Let C be the x-axis in k^{2} and \bar{C} be the image of x-axis in $\operatorname{Spec} A$. However, the we have $P \in \bar{C}$ and P_{2} over P, but we can find an irreducible closed subset in $\operatorname{Spec} B$ such that it contains P_{2} and its image is \bar{C}, because the preimage of \bar{C} is C and $P_{2} \notin C$. Here the going-down property fails.
(The question is: How to show B is integral over A and A is not integrally closed?)
B is integral over $A: x \in A$, we just need to show for any $f(y) \in B, f(y)$ is integral over A : consider $(f(y)-f(0))(f(y)-f(1)) \in A$, then $f^{2}(y)-(f(0)+$ $f(1) f(y)+f(0) f(1)-(f(y)-f(0))(f(y)-f(1))=0$ clearly.
A is not integrally closed: Consider

$$
\frac{\left(x+y-\frac{1}{2}\right)^{2}-\left(y-\frac{1}{2}\right)^{2}}{x}=2 y-1
$$

which is in $K(A)$ but not in A. However, $(2 y-1)^{2}$ is in A, then $2 y-1$ is a zero for a monic polynomial over A with variable T :

$$
T^{2}-(2 y-1)^{2}
$$

Now suppose $A \subset B$ are integral domains and A is integrally closed.
Observation 1: We may assume B is the integral closure of A in L.
Let L be the fraction field of B and K be the fraction field of A, then L / K is an algebraic field extension clearly. Let \bar{A} be the integral closure of A in L, if the going-down property holds for \bar{A}, then it holds for B because $A \subset B \subset \bar{A}$.

Observation 2: If for finite field extension L / K, the going-down properties holds, then for infinite algebraic field extensions, it still holds.

Suppose it is true for finite field extension, then for an algebraic field extension L / K, we have a filtration:

$$
K=L_{0} \subset L_{1} \subset L_{2} \subset \cdots \subset L_{n} \subset \cdots \subset L
$$

where L_{n} / L_{n-1} is a finite field extension. Let \bar{A}_{i} be the integral closure of A in L_{i}, and $\bar{A}=\cup_{i=1}^{\infty} A_{i}$. For given prime ideals $\mathfrak{q} \subset \mathfrak{p}$ in A and \mathfrak{Q} in \bar{A} such that $\mathfrak{P} \cap A=\mathfrak{p}$. Let $\mathfrak{P}_{n}=\mathfrak{P} \cap L_{n}$, and apply the going-down property for the finite field extension L_{n} / K to get $\mathfrak{Q}_{n} \subset \mathfrak{P}_{n}$ in \bar{A}_{n} such that $\mathfrak{Q}_{n} \cap A=\mathfrak{q}$. Clearly, $\cup_{i}^{\infty} \mathfrak{Q}_{i} \subset \bar{A}$ is a prime ideal and is what we need.

Observation 3: We may assume L / K is a normal finite extension.
We just take the normal closure of L then restrict the prime ideals.
Observation 4: For a finite normal extension L / K, we consider $K \subset K^{s} \subset L$, where K / K^{s} is separable and L / K^{s} is purely inseparable. Hence we just need to check two cases: finite Galois extension (normal and separable) and finite normal purely separable extension.

Lemma 1.7. Suppose L / K is a finite Galois extension with Galois group G, A is integrally closed in K, then for any prime ideal \mathfrak{p}, G acts transitively on the set of prime ideals of B lying over \mathfrak{p}.

Proof. Suppose \mathfrak{q} and \mathfrak{q}^{\prime} are two prime ideals of B lying over \mathfrak{p}. We need to show there is $\sigma \in G$ such that $\sigma(\mathfrak{q})=\mathfrak{q}^{\prime}$.

Claim: $\mathfrak{q}^{\prime} \subset \bigcup_{\sigma \in G} \sigma(\mathfrak{q})$. For any $x \in \mathfrak{q}^{\prime}$ and $y=\prod_{\sigma^{\prime} \in G} \sigma^{\prime}(x) \in K \in \mathfrak{q}^{\prime}$, hence $y \in \mathfrak{q}^{\prime} \cap K$. Since A is integrally closed, $y \in A$, hence $y \in \mathfrak{p}$ actually. So $y \in \sigma(\mathfrak{q})$ for any $\sigma \in G$. Because $\sigma(\mathfrak{q})$ is a prime ideal, there exists $\sigma^{\prime}(x) \in \sigma(\mathfrak{q})$, then $x \in \sigma^{\prime-1} \sigma(\mathfrak{q})$. Thus $\mathfrak{q} \subset \bigcup_{\sigma \in G} \sigma(\mathfrak{q})$.

By prime avoidance, there exists a $\sigma(\mathfrak{q})$ such that $\mathfrak{q} \subset \sigma(\mathfrak{q})$. However, $\mathfrak{q}^{\prime} \cap A=$ $\sigma(\mathfrak{q}) \cap A=\mathfrak{p}$, so $\mathfrak{q}^{\prime}=\sigma(\mathfrak{q})$, because for integral domains, (0) is unique prime ideal lying over (0)).

Note that if L / K is a finite normal and purely-inseparable field extension, then $\operatorname{Aut}(L / K)=\{\operatorname{id}\}$ and we may assume the characteristic is p. For $x \in L$, there is some integer v such that $x^{p^{v}}=\alpha \in K$ and $x^{p^{v}}-\alpha$ is the minimal polynomial.

Recall a lemma in field theory:
Lemma 1.8. Suppose K is of characteristic p, if $f(x) \in K[x]$ is irreducible, then there exists a non-negative integer v and an irreducible separable polynomial $g(x) \in$ $K[x]$ such that $f(x)=g\left(x^{p^{v}}\right)$

Sketch proof. We argue it by induction and notice that if f is not separable, then the formal derivation $f^{\prime}=0$, which means that for each non constant item x^{m}, m is a multiple of p. Hence there is a polynomial f_{1} such that $f(x)=f_{1}\left(x^{p}\right)$. We proceed this procedure until we have a separable polynomial.

Lemma 1.9. Let $A \subset B$ be integral domains and A is integrally closed. If $x \in B$ is integral over an ideal A, then the minimal polynomial of x over $K(A)$ is of the form

$$
x^{n}+\sum_{i=1}^{n} c_{i} x^{n-i}
$$

where $c_{i} \in A$.
A proof for more general case is in P63 Proposition 5.15 in Ati69.
Proof. Clearly, x is algebraic over $K(A)$, suppose the minimal polynomial is

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0
$$

and we let L be the splitting field of this irreducible polynomial, so all the conjugates x_{1}, \ldots, x_{n} are in L and a_{i} is given by symmetric polynomials in x_{i}. Note x_{i} is integral over A as x, then the coefficients a_{i} are integral over A. Since A is integrally closed, $a_{i} \in A$ for each i.

Lemma 1.10. Suppose L / K is a finite normal and purely inseparable extension, for any prime ideal $\mathfrak{p} \in \operatorname{Spec} A$, the fiber over \mathfrak{p} consists of exactly one element.

Proof. Suppose there are two prime ideals, $\mathfrak{q}, \mathfrak{q}^{\prime}$ of B lying over \mathfrak{p}. We need to show $\mathfrak{q}=\mathfrak{q}^{\prime}$. Suppose $x \in \mathfrak{q}$, then $x^{p^{v}}=\alpha \in A$ (due to previous lemma) for some integer $v \in \mathbb{N}$, so $\alpha \in \mathfrak{q} \cap A=\mathfrak{p}$, then $x^{p^{v}} \in \mathfrak{q}^{\prime}$ and $x \in \mathfrak{p}^{\prime}$. Thus $\mathfrak{q} \subset \mathfrak{q}^{\prime}$. Similarly, we have $\mathfrak{q}^{\prime} \subset \mathfrak{q}$. Finally, $\mathfrak{q}=\mathfrak{q}^{\prime}$.

The existence is given by Heuristic approach.
Theorem 1.11. Suppose $f: A \rightarrow B$ is an integral extension between integral domains and A is integrally closed, then $f^{*}: \operatorname{Spec} B \rightarrow \operatorname{Spec} A$ is an open map.

Proof. Since Zariski topology is generated by distinguished open set $D_{x}=\{\mathfrak{q} \in$ Spec $B \mid x \notin \mathfrak{q}\}, x \in B$, we just need to show $f^{*}\left(D_{x}\right)$ is open.

Let the minimal polynomial of x over $K=K(A)$ be

$$
\begin{equation*}
x^{n}+a_{1} x^{n-1}+\cdots+a_{n} \tag{1}
\end{equation*}
$$

where $a_{i} \in A$ by Lemma 1.9 , then we claim that $f^{*}\left(D_{x}\right)=\bigcup_{i=1}^{n} D_{a_{i}}$.
By previous lemmas, we first assume L / K is a Galois extension and B is the integral closure of A in L and let G be the Galois group. Note that for any prime ideal $\mathfrak{q} \in \operatorname{Spec} B, f^{*}(\mathfrak{q})=f^{*}(\sigma(\mathfrak{q}))$. Then we have

$$
\begin{align*}
f^{*}(D(x) & =\bigcup_{\sigma \in G} f^{*}\left(\sigma\left(D_{x}\right)\right) \\
& =\bigcup_{\sigma \in G} f^{*}\left(D_{\sigma(x)}\right) \tag{2}\\
& =f^{*}\left(\bigcup_{\sigma \in G} D_{\sigma(x)}\right) \\
& =f^{*}\left(V(\{\sigma(x) \mid \sigma \in G\})^{c}\right)
\end{align*}
$$

Note that a_{i} acts on B via the extension f, let $a_{i}^{\prime}=f\left(a_{i}\right)$ and we rewrite equation 1 to be

$$
\begin{equation*}
x^{n}+a_{1}^{\prime} x^{n-1}+\cdots+a_{n}^{\prime}=0 \tag{3}
\end{equation*}
$$

and if $\mathfrak{q} \in V(\{\sigma(x) \mid \sigma \in G\})$, then $\mathfrak{q} \in V\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ because a_{i}^{\prime} is given by polynomial in $\sigma(x)$. Conversely, if $\mathfrak{q} \in V\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$, then consider $B / \mathfrak{q}, \bar{x}^{n}=0$ in B / \mathfrak{q}, hence $x \in \mathfrak{q}$, moreover, $\sigma(x) \in \mathfrak{q}$ for all $\sigma \in G$. Hence we have

$$
V(\{\sigma(x) \mid \sigma \in G\})=V\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)
$$

Back to equation 2, we have

$$
f^{*}\left(D_{x}\right)=f^{*}\left(V\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)^{c}\right)=f^{*}\left(\bigcup_{i=1}^{n} D_{a_{i}^{\prime}}\right)=\bigcup_{i=1}^{n} f^{*}\left(D_{a_{i}^{\prime}}\right)=\bigcup_{i=1}^{n} D_{a_{i}}
$$

Then we may assume L / K is a finite normal and purely inseparable extension, then by Lemma 1.10, f^{*} is injective. For any $x \in B$, there is a natural number v such that $x^{p^{v}} \in A$, then $f^{*} D_{x}=D_{x^{p^{v}}}$ clearly. f^{*} is an open map clearly.

Theorem 1.12. Following the condition in previous theorem, $f: A \rightarrow B$ has the going-down property.

Proof. We just follows Lemma 1.5 to show we have such minimal prime ideal that is contained in \mathfrak{q}_{1}. First, we can find \mathfrak{q}^{\prime} such that $\mathfrak{q}^{\prime} \cap A$ is a minimal prime ideal contained in \mathfrak{p}_{1}. Then consider the induced map $A /\left(\mathfrak{q}^{\prime} \cap A\right) \rightarrow B / \mathfrak{q}^{\prime}$ and we have $\overline{\mathfrak{q}_{1}^{\prime}}$ in $B / \mathfrak{q}^{\prime}$ such that $\mathfrak{q}_{1}^{\prime} \cap A=\mathfrak{p}_{1}$. Since the Galois group acts transitively on the fiber of \mathfrak{p}, then we can find σ in the Galois group such that $\sigma\left(\mathfrak{q}_{1}^{\prime}\right)=\mathfrak{q}_{1}$, then $\mathfrak{q}=\sigma\left(\mathfrak{q}^{\prime}\right)$ is what we need, because $\sigma\left(\mathfrak{q}^{\prime}\right) \cap A=\mathfrak{p}$ and $\mathfrak{q} \subset \mathfrak{q}_{1}$.

The trick of Galois group action(group action):
Proposition 1.1. Let G be a finite group of automorphisms of a ring A, \mathfrak{p} be a prime ideal of $A^{G}(G$-fixed points of $A)$ and X be a set of prime ideals \mathfrak{P} in A such that $\mathfrak{P} \cap A^{G}=\mathfrak{p}$, then G acts transistively on X.

Proof. Let \mathfrak{P} and \mathfrak{P}^{\prime} be two elements in X, we now claim that $\mathfrak{P}^{\prime} \subset \bigcup_{\sigma \in G} \sigma(\mathfrak{P})$. If the claim is true, then by prime avoidance, there exists some $\sigma^{\prime} \in G$ such that $\mathfrak{P} \subset \sigma^{\prime}(\mathfrak{P})$. Since $\mathfrak{P}^{\prime} \cap A^{G}=\sigma^{\prime}(\mathfrak{P}) \cap A^{G}=\mathfrak{p}$, then $\mathfrak{P}^{\prime}=\sigma^{\prime}(\mathfrak{P})$.

Now we prove the claim: for any $x \in \mathfrak{P}^{\prime}$, consider $\prod_{\sigma \in G} \sigma(x) \in A^{G} \cap \mathfrak{P}^{\prime}=\mathfrak{p}$, then $\prod_{\sigma \in G} \sigma(x) \in \mathfrak{P}$. Hence there exists $\sigma \in G$ such that $\sigma(x) \in \mathfrak{P}$, which is equivalent to say that $x \in \sigma^{-1} \mathfrak{P}$, then $x \in \prod_{\sigma \in G} \sigma(x)$.

2. DIMENSION THEORY

Definition 2.1. Let A be a Noetherian semilocal ring and \mathfrak{m} be the Jacobson radical of A, for an ideal I in A satisfying $\mathfrak{m}^{v} \subset I \subset \mathfrak{m}$ for some postive integer v, then we define the associated graded ring $G_{I}(A)$ to be

$$
G_{I}(A)=\bigoplus_{n=0}^{\infty} I^{n} / I^{n+1}
$$

If M is a finitely generated A-module, then the associated graded module is defined as

$$
G_{I}(M)=\bigoplus_{n=0}^{\infty} I^{n} M / I^{n+1} M
$$

Remark 2.2. Note that A / I is an Artin ring, we just need to show A / I is of dimension 0 i.e. every prime ideal in A that contains I is a maximal ideal. Let \mathfrak{p} be a prime ideal in A that contains I, then $\mathfrak{m}^{v} \subset \mathfrak{p}$ and $\mathfrak{m} \subset \mathfrak{p}$ so that the product of all maximal ideals in A is contained in \mathfrak{p}, hence \mathfrak{p} is one of maximal ideals.
Proposition 2.1. Let A be a Noetherian semilocal ring and I is such a ideal in the previous definition, then

$$
\operatorname{dim} A=\operatorname{dim} G_{I}(A)
$$

Proof.
Application of dimension theory:
Theorem 2.3 (Zariski lemma). Suppose A is a finitely generated k-algebra and \mathfrak{m} is a maximal ideal of A, then A / \mathfrak{m} is a finite algebraic extension of k.

Proof. Note that the dimension of A / \mathfrak{m} is 0 , then the transcendental degree of A / \mathfrak{m} is 0 , hence A / \mathfrak{m} is a algebraic extension of k. Since A / \mathfrak{m} is finitely generated, A / \mathfrak{m} is a finite k extension.

3. Geometric viewpoint of primary decomposition

Given a spectrum $\operatorname{Spec} A$, the associated points are the generic points of irreducible components of support of some global section i.e. for some $s \in A$,

$$
\operatorname{Supp}(s)=\left\{\mathfrak{p} \in \operatorname{Spec} A \left\lvert\, \frac{s}{1} \neq 0 \in A_{\mathfrak{p}}\right.\right\}
$$

namely if $\mathfrak{p} \in \operatorname{Supp}(s)$, then $\operatorname{Ann}(s) \subset \mathfrak{p}$, which means that

$$
\operatorname{Supp}(s)=V(\operatorname{Ann}(s))
$$

For any A-module, we just take the global section of the quasicoherent sheaf \tilde{M} so that we can define associated point of A-modules.

The isolated points is the generic points of irreducible components of Spec A i.e. the support of the function 1, while the other associated points are called embedded points. (The ideal is to replace the category of A-modules by the category quasicoherent sheaves over $\operatorname{Spec} A$, then think it geometrically.)
Proposition 3.1. Suppose A is a reduced ring, then $\operatorname{Spec} A$ has no embedded points.
Proof. If A is integral, for any non-zero $a \in A, \operatorname{Ann}(x)=(0)$, hence the support is $\operatorname{Spec} A$. Since $\operatorname{Spec} A$ is irreducible, the unique associated point is the generic point of $\operatorname{Spec} A$ i.e. [(0)].

For general case, if $f \in A$ is a function on a reduced affine scheme $\operatorname{Spec} A$, then claim that $\operatorname{Supp}(f)=\overline{D(f)}$: first, clearly $D(f) \subset \operatorname{Supp}(f)$ and $\operatorname{Supp}(f)$ is a closed subset, we just need to show $\operatorname{Supp}(f)$ is the smallest closed set to contain $D(f)$. Suppose $V(I) \supset D(f)$ for ideal I, then

$$
I \subset \bigcap_{\mathfrak{p} \in D(f)} \mathfrak{p}
$$

since A is reduced, so is A_{f}, hence $I=0$ in A_{f}, i.e. for any $s \in I$, there is a positive integer n such that $s f^{n}=0$ in A. Thus we have $s^{n} f^{n}=0$ and $s f=0$, due to the reducedness. Then $I \subseteq \operatorname{Ann}(f)$.

Now we conclude that, for any $s \in I, V(\operatorname{Ann}(f)) \subset V(s)$, then $\operatorname{Supp}(f) \subset V(I)$.

Next to show $\overline{D(f)}$ is the union of irreducible components that meets $D(f)$. Suppose $V(\mathfrak{p})$ is an irreducible component of $\operatorname{Spec} A$ i.e. \mathfrak{p} is a minimal prime ideal in A and $V(\mathfrak{p}) \cap D(f) \neq \emptyset$, then there is a prime ideal \mathfrak{p}^{\prime} such that $\mathfrak{p} \subset \mathfrak{p}^{\prime}$ and $f \notin \mathfrak{p}^{\prime}$ i.e. $f \notin \mathfrak{p}$, then $\mathfrak{p} \in D(f)$. Hence $V(\mathfrak{p})=\overline{\{\mathfrak{p}\}} \subset \overline{D(f)}$.

Therefore $\operatorname{Supp}(f)$ is a union of irreducible components and each irreducible component $V(\mathfrak{p})$ has no embedded point (because A / \mathfrak{p} is an integral domian).

An important property of associated points: The natural map

$$
M \rightarrow \prod_{\text {associated primes } \mathfrak{p}} M_{\mathfrak{p}}
$$

is injective. The elements in the kernel of this map vanishes at each associated points, which means that their support are empty, hence their zero functions on $\operatorname{Spec} A$ i.e. 0 in M.

4. Regularity and DVRs

Theorem 4.1. Suppose (A, \mathfrak{m}, k) is a Noetherian local ring, then $\operatorname{dim} A \leqslant \operatorname{dim}_{k} \mathfrak{m} / f m^{2}$.
Proof. Since A is a Noetherian, \mathfrak{m} is a finitely generated A-module. Then by Nakayama's lemma, we may assume $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$ such that $\left\{\overline{x_{i}}\right\}_{i=1}^{n}$ is a k basis of vector space $\mathfrak{m} / \mathfrak{m}^{2}$. Then by Krull's height theorem, \mathfrak{m} is the minimal prime ideal that over $\left(x_{1}, \ldots, x_{n}\right)$, then the height of \mathfrak{m} is not bigger than n i.e. $\operatorname{dim} A \leqslant \operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}$.

Definition 4.2. (A, \mathfrak{m}, k) is a regular local ring, if A is a Noetherian ring and $\operatorname{dim} A=\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}$. If a Noetherian ring A is saied to be regular, then it is regular at all its prime ideal.

Proposition 4.1. A dimension 0 Noetherian local ring is regular if and only if it is a field.

Proof. The proof is straightforward, Since it is of dimension 0 and regular, then its maxmial ideal is 0 .

Lemma 4.3. A surjection between to integral domains of the same dimension is an isomorphism.

Proof. Let A, B be two integral domain of the same dimension and $f: A \rightarrow B$ be a surjective ring homomorphism. The kernel $\operatorname{ker} f$ must be a prime ideal \mathfrak{p} with $A / \mathfrak{p} \cong B$. Since A / \mathfrak{p} and A have the same dimension, \mathfrak{p} must be a minimal prime ideal of A. Because A is an integral domain, $\mathfrak{p}=0$, then f is an isomorphism.

Theorem 4.4. Suppose (A, \mathfrak{m}, k) is a regular local ring of dimension n, then A is an integral domain.

Proof. We prove it by induction on n. When $n=0$, it is clearly true by previous proposition. Suppose it is true for dimension less than n.

Take $f \in \mathfrak{m} / \mathfrak{m}^{2}$, then $A /(f)$ is a Noatherian local ring. According to Krull's principal ideal theorem, $\operatorname{dim} A /(f) \geqslant n-1$. Observe that the Zariski cotangent space at $A /(f)$ i.e. $(\mathfrak{m} /(f)) /(\mathfrak{m} /(f))^{2}=\left(\mathfrak{m} / \mathfrak{m}^{2}\right) /(\bar{f})$ is of dimension $n-1$ clearly. By Theorem 4, $A /(f)$ is a regular local ring of dimension $n-1$. Apply the inductive hypothesis, $A /(f)$ is an integral domain.

We just need to show that any minimal prime ideal in A is (0). Let $\mathfrak{p} \subset A$ be a minimal prime ideal, we claim that A / \mathfrak{p} is a regular local ring of dimension n. The Zariski cotangent space of A / \mathfrak{p} is a quotient of $\mathfrak{m} / \mathfrak{m}^{2}$, hence its dimension is at most n. Since \mathfrak{p} is a minimal prime ideal of $A, \operatorname{dim} A / \mathfrak{p}=\operatorname{dim} A=n$, then by Theorem 4, A / \mathfrak{p} is a regular Noetherian local ring of dimension n. Now we replace A by A / \mathfrak{p} in the argument in the first paragraph, then $A /(\mathfrak{p}+(f))$ is an integral domain. Note that the quotient morphism $A /(f) \rightarrow A /(\mathfrak{p}+(f))$ is an isomorphism by Lemma 4.3 .

Thus $\mathfrak{p}=\mathfrak{p}+(f)$ i.e. $\mathfrak{p} \subset f A$. Every element in \mathfrak{p} is of the form $f v$ for $v \in A$. Further, since $f \notin \mathfrak{p}, v \in \mathfrak{p}$. We have $\mathfrak{p} \subset f \mathfrak{p}$, then $\mathfrak{p}=f \mathfrak{p}$. Then apply Nakayama's lemma (global version), we conclude that $\mathfrak{p}=0$.

Next we focus on the case of dimension 1.
Theorem 4.5. Suppose (A, \mathfrak{m}, k) is a Noetherian local ring of dimension 1 , then the following are equivalent:
(a) (A, \mathfrak{m}) is regular.
(b) \mathfrak{m} is principal
(c) all the non-zero ideals are of the form \mathfrak{m}^{n}.
(c)' A is a principal ideal domain.

Proof. $(a) \Longrightarrow(b)$: Since A is regular and $\operatorname{dim} A=1$, then $\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}=1$. Let $u \in \mathfrak{m} \backslash \mathfrak{m}^{2}$ be a representative of a generator in $\mathfrak{m} / \mathfrak{m}^{2}$. By Nakayama's lemma, u generates \mathfrak{m}, hence \mathfrak{m} is a principal ideal.
$(b) \Longrightarrow(a)$: It is obvious. Since $\mathfrak{m}=(t)$, then $\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2} \leqslant 1$, while $1=$ $\operatorname{dim} A \leqslant \operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}$. Thus $\operatorname{dim} A=\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}=1$ and A is regular.
$(a) \Longrightarrow(c):$ Let $I \subset A$ be a non-zero ideal, then there exists n such that $I \subset \mathfrak{m}^{n}$ and $I \not \subset \mathfrak{m}^{n+1}$. We take $t \in I \backslash \mathfrak{m}^{n+1}$. Note that $\operatorname{dim}_{k} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}=1$ because $\mathfrak{m}^{n}=$ $\left(u^{n}\right)$ (recall previous argument), hence t generates $\mathfrak{m}^{n} / \mathfrak{m}^{n+1}$ as a representative. By Nakayama's lemma, t generates \mathfrak{m}^{n}. Hence $\mathfrak{m}^{n}=(t) \subset I \subset \mathfrak{m}^{m+1}$ and $I=\mathfrak{m}^{n}$. In total, all the non-zero ideals of A is of the form \mathfrak{m}^{k} for some positive integer k.
$(c) \Longrightarrow(a)$: Argue by contradiction. Suppose A is not regular, then $\operatorname{dim}_{k} \mathfrak{m} / \mathfrak{m}^{2}$ is at least 2. Then there is an element $x \in \mathfrak{m} \backslash \mathfrak{m}^{2}$, such that $\mathfrak{m}^{2} \subsetneq\left(u, \mathfrak{m}^{2}\right) \subsetneq \mathfrak{m}$, contradiction.
$(c)^{\prime}$ is equivalent to (c) clearly.
Definition 4.6. Suppose K is a field, a discrete valuation on K is a function $v: K^{*} \rightarrow \mathbb{Z}$ such that $v(x y)=v(x)+v(y)$ and if $x+y \neq 0$,

$$
v(x+y) \geqslant \min \{v(x), v(y)\}
$$

(we set $v(0)=\infty$ for convenience). The valuation ring \mathcal{O}_{v} with respect to v is defined to be

$$
\mathcal{O}_{v}=\{x \in K \mid v(x) \geqslant 0\}
$$

We say a ring A is a discrete valuation ring or DVR if there is a discrete valuation v on the fraction field $K=K(A)$ such that A is the valuation ring with respect to v.

Proposition 4.2. (A, \mathfrak{m}) is a $D V R$ if and only if it satisfies the one of the equivalent conditions in 4.5 .

Proof. We first to show a DVR is a Noetherian local principal ideal domain. First, it is a local ring: let $\mathfrak{m}=\{x \in A \mid v(x)>0\}$, it is an ideal clearly. For $x \in A \backslash \mathfrak{m}$, then $v(x)=0$ and $v\left(x^{-1} x\right)=v\left(x^{-1}\right)+v(x)=v(1)=0$, then $v\left(x^{-1}\right)=0$ with $x^{-1} \in A$. Hence \mathfrak{m} is the unique maximal ideal in A. Next to show \mathfrak{m} is a principal ideal: take $t \in \mathfrak{m}$ such that $v(u)=1$, then for any $x \in \mathfrak{m} v\left(x u^{-1}\right)=v(x)-v(u) \geqslant 0$ hence $x u^{-1} \in A$ and $\mathfrak{m}=(u)$. Let $I_{n}=\{x \in A \mid v(x) \geqslant n$, then we have a filtration

$$
A=I_{0} \supsetneq \mathfrak{m}=I_{1} \supsetneq I_{2} \supsetneq I_{3} \supsetneq I_{4} \cdots \supsetneq I_{n} \supsetneq \ldots
$$

We claim that all the non-zero ideals are of the form I_{n}. Let $I \subset A$ be an ideal, then take $x \in I$ such that $v(x)=n$ is the least one in I, then $I \subset I_{n}$. Conversely, for any $y \in I, v\left(x^{-1} y\right)=v(y)-v(x) \geqslant 0$, then $x^{-1} y \in A$, hence $I=(t)$. Similarly, $(t)=I_{n}$. Now we have proven the claim. In particular, suppose $\mathfrak{m}=(u)$, all the non-zero ideals are of the form $\left(u^{n}\right)$. Then A is a principal ideal domain of dimension 1 (it is a domain because it is a subring of a field). Hence A satisfies the conditions in Theorem 4.5.

Conversely, suppose A is a regular Noetherian local and $\mathfrak{m}=(u)$, we define the valuation on $K=K(A)$ by sending $v(u)=1$ and $v(i)=0$ if i is a unit in A. Claim that all non-zero element in K is of the form $a u^{n}$ with an integer n : for any $x, y \in A$, they are of the forms $x=b x^{n}$ and $y=c x^{m}$ for $b, c \in A^{*}$ and non-negative integers n, m, then

$$
\frac{x}{y}=b c^{-1} x^{n-m}
$$

where $b c^{-1}$ is still a unit in A. Hence we prove the claim and following the claim, the valuation is well-defined by extending $v\left(a x^{n}\right)=n$. Clearly, if $v(x) \geqslant 0$, then $x \in A$. Hence A is a DVR.

Theorem 4.7. Suppose (A, \mathfrak{m}) is a Noetherian local domain of dimension 1 , then A is a $D V R$ if and only if A is integrally closed.

Proof. When A is a DVR, it is a principal ideal domain, in particular, it is a UFD, hence it is integrally closed. Conversely, suppose A is integrally closed, we are going to show that \mathfrak{m} is a principal ideal. For any non-zero $x \in \mathfrak{m},(x)$ is a \mathfrak{m}-primary (because \mathfrak{m} is of height 1 i.e. the unique non-zero prime ideal in A). Then $\sqrt{(x)}=\mathfrak{m}$ i.e. for any $y \in \mathfrak{m}$, there exists a positive integer n_{y} such that $y^{n_{y}} \in(x)$. Since \mathfrak{m} is finitely generated, there exists n such that $\mathfrak{m}^{n} \subseteq(x)$ and $\mathfrak{m}^{n-1} \nsubseteq(x)$. Choose $y \in \mathfrak{m}^{n-1}$ such that $y \notin(x)$, then $\frac{y}{x} \mathfrak{m} \subseteq \frac{1}{x} \mathfrak{m}^{n} \subseteq A$, hence $\frac{y}{x} \mathfrak{m}$ is an ideal in A and either $\frac{y}{x} \mathfrak{m} \subset \mathfrak{m}$ or $\frac{y}{x} \mathfrak{m}=A$. We want to show that $\frac{y}{x} \mathfrak{m}=A$ then $\mathfrak{m}=\frac{x}{y} A$ is a principal ideal.

It suffices to show that $\frac{y}{x} \mathfrak{m} \nsubseteq \mathfrak{m}$ and we argue by contradiction. Suppose $\frac{y}{x} \mathfrak{m} \subset \mathfrak{m}$, then $\frac{y}{x}$ determines an A-linear map from finitely generated A-module \mathfrak{m} to itself. Take a list of generators and we have an A-matrix T. Note that $T-\frac{y}{x} I=0$ and $\operatorname{det}\left(T-\frac{y}{x} I\right)=0$, hence the monic polynomial with coefficients in A is $\operatorname{det}(T-t I)$ in variable of t. Then $\frac{y}{x}$ is integral over A and $\frac{y}{x} \in A$ because A is integrally closed. Hence $y \in(x)$, which leads to contradiction.

5. Decomposition and Dedekind domain

We first do some observation: suppose A is a Noetherian domain and $\mathfrak{a} \subseteq A$ is a non-zero ideal. We have known that the primary decomposition exists, hence

$$
\mathfrak{a}=\bigcap_{\text {primary }} \mathfrak{q}
$$

If A is of dimension 1 , then every non-zero prime ideal is a maximal ideal and for a primary decomposition, there is no embedded prime in the set of associated prime ideals of \mathfrak{a}. Note that for two distinct primary ideals \mathfrak{q} and \mathfrak{q}^{\prime} where $\sqrt{\mathfrak{q}}=\mathfrak{m}$ and $\sqrt{\mathfrak{q}^{\prime}}=\mathfrak{m}^{\prime}$ are two distinct maximal ideal, then claim that $\mathfrak{q}+\mathfrak{q}^{\prime}=1$. If $\mathfrak{q}+\mathfrak{q}^{\prime} \neq 1$, then there exists a maximal ideal $\mathfrak{m}^{\prime \prime}$ to contain $\mathfrak{q}+\mathfrak{q}^{\prime}$, further $\mathfrak{m}^{\prime \prime}$ contain $\sqrt{\mathfrak{q}}$ and $\sqrt{\mathfrak{q}^{\prime}}$ i.e. $\mathfrak{m}^{\prime \prime}$ contain $\mathfrak{m}+\mathfrak{m}^{\prime}=(1)$, contradiction. Since all distinct primary ideals are coprime, we may write

$$
\mathfrak{a}=\prod_{\text {primary }} \mathfrak{q}
$$

Now the question is: when would every \mathfrak{p}-primary ideal of A be a power of \mathfrak{p} ? The answer is when A is integrally closed (necessary and sufficient condition). Now we move on to this answer.

Observation

- \mathfrak{q} is \mathfrak{p}-primary in A if and only if $\mathfrak{q} A_{\mathfrak{p}}$ is $\mathfrak{p} A_{\mathfrak{p}}$-primary.
- when \mathfrak{q} is \mathfrak{p}-primary, then $\mathfrak{q}=\mathfrak{p}^{n}$ if and only $\mathfrak{q} A_{\mathfrak{p}}=\left(\mathfrak{p} A_{\mathfrak{p}}\right)^{n}$.

Hence we may reduce the question to local case.
Now the question is: For a Noetherian local domain (A, \mathfrak{m}) of dimension 1 , when would every \mathfrak{m}-primary ideal be a power of \mathfrak{m} ?

Further observation:

- Every non-zero ideal in A is \mathfrak{m}-primary.
- \mathfrak{q} is \mathfrak{m}-primary if and only if $\sqrt{\mathfrak{q}}=\mathfrak{m}$.

Thus, the local question becomes: For a Noetherian local domain (A, \mathfrak{m}) of dimension 1 , when would every non-zero ideal be of the form $\mathfrak{m}^{n}, n \in \mathbb{N}$?

Recall Theorem 4.5, we see that the answer is DVR!
Theorem 5.1. Let A be a Noetherian domain of dimension 1, then every primary decomposition is a prime decomposition if and only if for each non-zero prime ideal $\mathfrak{p}, A_{\mathfrak{p}}$ is a $D V R$.

Recall that A is integrally closed if and only if $A_{\mathfrak{p}}$ is integrally closed for each prime ideal $\mathfrak{p} \in \operatorname{Spec} A$. Then by Theorem 4.7, we have

Theorem 5.2. Let A be a Noetherian domain of dimension 1, then every primary decomposition is a prime decomposition if and only if A is integrally closed.
Definition 5.3. A is a Dedekind domain if A is an integrally closed Noetherian domain of dimension 1 .

Example 5.4. Let K be a finite field extension of \mathbb{Q} and \mathcal{O}_{K} be the integral closure of \mathbb{Z} in K (we may also call it the ring of integers in K.) Now we claim that \mathcal{O}_{K} is a Dedkind domain.

First, \mathcal{O}_{K} is integrally closed clearly. Second, $\mathbb{Z} \hookrightarrow \mathcal{O}_{K}$ is an integral morphism, and \mathbb{Z} is a Dedekind domain clearly, hence by going-up and going-down, $\operatorname{dim} \mathcal{O}_{K}=$ $\operatorname{dim} \mathbb{Z}=1$. Finally, it remains to show \mathcal{O}_{K} is a Noetherian. We need the following lemma to show it.

Lemma 5.5. Given a domain A and $K=K(A)$ the fraction field with characteristic 0 , let L / K be a finite separable extension of degree n and B be the integral closure of A in L. Then there exists a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ in L such that

$$
B \subseteq A v_{1}+\cdots+A v_{n}
$$

Thus, as a consequence, if A is Noetherian, so is B.
Proof. Observe that for any non-zero $v \in L$, there is an $a \in A$ such that $a v \in B$ (there is an a such that $a v$ is integral over A because v is algebraic over K, the fraction field of A.)

Thus we may assume $\left\{w_{1}, \ldots, w_{n}\right\}$ is a basis of L over K with $w_{i} \in B$. Note that $\left\langle v, v^{\prime}\right\rangle=\operatorname{Tr}\left(v v^{\prime}\right)$ is a non-degenerate bilinear form of L over K when it is separable. Let $\left(v_{1}, \ldots, v_{n}\right)$ be the dual basis of $\left(w_{1}, \ldots, w_{n}\right)$ namely $\left\langle v_{i}, w_{j}\right\rangle=\delta_{i j}$ for each i, j. $\left(\left(v_{1}, \ldots, v_{n}\right)\right.$ is still a basis of L over K because they are linearly independent.)

Then $\forall b \in B$, write $b=\sum_{i=1}^{n} \alpha_{i} v_{i}$ where $\alpha_{i} \in K$. Then

$$
\left\langle b, w_{j}\right\rangle=\sum_{i=1}^{n} \alpha_{i}\left\langle v i, w_{j}\right\rangle=\sum_{i=1}^{n} \alpha_{i} \delta_{i j}=\alpha_{j}
$$

because $b w_{j} \in B, \operatorname{Tr}\left(b w_{j}\right) \in B$ (the trace is the sum of all its Galois conjugate elements and all its Galois conjugate elements is integral over K clearly), then $\operatorname{Tr}\left(b w_{j}\right)=B \cap K=A$ i.e. $\alpha_{j} \in A$.

In general, there is proposition:
Theorem 5.6 (Krull-Akizuki). Let A be a Noetherian domain of dimension 1 with fraction field K, if L / K is a finite extension and $B \subset L$ is an arbitrary subring that contains A, then B is a Noetherian domain.

We need to prove that for any ideal I in B, I is a finitely generated B-module. Observe that $I \otimes_{A} K$ is a K-vector space in L, hence $I \otimes_{A} K$ is of finite dimension, namely we say that I is an A-module of finite rank. We need the following lemma to prove the theorem.

Lemma 5.7. Let A and L be the ones in the assumption of the theorem and let M be a torsion-free A-module of finite rank r. Then for $0 \neq a \in A$, we have

$$
l(M / a M) \leqslant r * l(A / a A)
$$

Proof. First, we assume M is finitely generated. Take x_{1}, \ldots, x_{r} in M linearly independent over A and let $E=\oplus_{i=1}^{r} A x_{i}$, then there exists $t \in A$ such that for any $y \in M, t y \in E$ (We just find such t^{\prime} for each generator of M, then multiply them together to get such t). Let $C=M / E$ and $t C=0$ i.e. C is totally an A-torsion module and is finitely generated obviously. Then there exists a filtration of C :

$$
C=C_{0} \supset C_{1} \supset \cdots \supset C_{n}=0
$$

such that $C_{i} / C_{i+1}=A / \mathfrak{p}_{i}$ for some non-zero prime ideal \mathfrak{p}_{i} and actually, such prime ideals are maximal ideals (the existence of this filtration is in Professor Qiu's notes Proposition 4.11 P75 and since A is an integral domain of dimension 1, every non-zero prime ideal is a maximal ideal). Hence C is of finite length clearly. For any $0 \neq a \in A$ and any positive integer n, we have an exact sequence

$$
E / a^{n} E \longrightarrow M / a^{n} M \longrightarrow C / a^{n} C \longrightarrow 0
$$

this gives

$$
\begin{equation*}
l\left(M / a^{n} M\right) \leqslant l\left(E / a^{n} E\right)+l(C) \tag{4}
\end{equation*}
$$

Since M and E are torsion-free, we have $a^{i} E / a^{i+1} E \cong E / a E$ and similar for M, then we may rewrite the equation 4 into

$$
\begin{equation*}
n l(M / a M) \leqslant n l\left(E / a^{n} E\right)+l(C) \tag{5}
\end{equation*}
$$

for each n. Thus $l(M / a M) \leqslant l(E / a E)$. Note that $E \cong A^{r}$, hence $l(E / a E)=$ $r l(A / a A)$. This completes the proof in the case finitely generated modules.

In general case, take any finitely generated submodule \bar{N} in $M / a M$ and let N be the preimage of \bar{N} in M, which is finitely generated. Then

$$
l(\bar{N})=l(N /(N \cap a M)) \leqslant l(N / a N) \leqslant r l(A / a A)
$$

Since this inequation is independence of the choice of finitely generated submodules in $M / a M$, so that \bar{M} is in fact finitely generated, otherwise we can find a finitely generated submodule in \bar{M} of arbitrarily length. Hence $l(M / a M) \leqslant r l(A / a A)$.

Remark 5.8. We need C to be torsion, otherwise, consider $C=\mathbb{Z}^{2}$ and $A=\mathbb{Z}$, which is not of finite length.

Now we prove the theorem.
Proof of the theorem. We may replace the field L by the fraction field of B. For any non-zero ideal I in B, I is a finite rank A-module. Take $0 \neq a \in I \cap A$, $l(I / a I) \leqslant l(A / a A)$. By Krull's principal ideal theorem, $A / a A$ is of dimension 0 , then $A / a A$ is an Artinian ring (Noetherian and dimension 0), hence $l(A / a A)$ is finite. Thus $l(I / a I)$ is finite i.e. $I / a I$ is a finite length A-module. Moreover, I is a finitely generated B-module.

Remark 5.9. Actually, such B is of dimension at most 1. If P is a non-zero prime ideal in $B, B / P$ is a Noetherian domain of dimension 0 i.e. an Artinian ring, therefore B / P is a field, namely P is a maximal ideal and $\operatorname{dim} B=1$.

6. Divisor on curves

Definition 6.1. Let $f: X \rightarrow Y$ be a finite morphism between smooth curves. We define

$$
f^{*}: \text { Weil } Y \rightarrow \text { Weil } X
$$

as follows, for any closed point $Q \in Y$, let t be a local parameter of Q i.e. a generator of the prime ideal in the DVR \mathscr{O}_{Q}, then define

$$
f^{*} Q=\sum_{f(P)=Q} v_{P}\left(f^{*}(t)\right)[P]
$$

where P are closed points and note that f induces a morphism at stalk-level $\mathscr{O}_{P} \rightarrow$ \mathscr{O}_{Q}.

We can extend this definition from prime divisors to any divisor freely.
Remark 6.2. $f^{*} Q$ is independent of the choice of local parameter t because two local parameters is in difference of a unit in the local ring.

Since f is a finite morphism, then $f^{-1}(Q)$ is a finite set, hence it is well defined.

For a principal divisor $\operatorname{div}(f)$ in $Y, f^{*}(\operatorname{div}(g))=\operatorname{div}(g \circ f)$ (we may identify $g \circ f$ as the image of g via the morphism induced by f at the sheaf-level. Hence, we actually have a morphism

$$
f^{*}: \mathrm{Cl}(Y) \rightarrow \mathrm{Cl}(X)
$$

Proposition 6.1. Let $f: X \rightarrow Y$ be a finite morphism between smooth curves, the the degree of field extension $K(Y) \hookrightarrow K(X)$ induced by f is called the degree of f, denoted by $\operatorname{deg} f$. Then for any divisor $D \in \operatorname{Weil}(X)$, we have

$$
\operatorname{deg}\left(f^{*} D\right)=\operatorname{deg}(f) * \operatorname{deg}(D)
$$

Corollary 6.1. For a principle divisor $\operatorname{div}(h)$ on $X, \operatorname{deg}(h)=0$. Hence there is a surjective homomorphism

$$
\operatorname{deg}: \operatorname{Cl}(X) \rightarrow \mathbb{Z}
$$

However, in general, deg is not injective. Next we will show the necessary and sufficient condition that deg is injective.

Example 6.3. Let X be a projective and smooth curve, then if there exists a pair of distinct closed points $P, Q \in X$ such that $P-Q=\operatorname{div}(h)$ for some $h \in K(X)$, then $X \simeq \mathbb{P}^{1}$ i.e X is birational equivalent to a projective line. Hence $\operatorname{cl}(X) \cong \mathbb{Z}$ if and only if $X \simeq \mathbb{P}^{1}$.

First, $\operatorname{div}(h)=P-Q$ means for a rational function h on X, h has a simple zero at P and a simple pole at Q.

Fact, there is a rational map $\varphi: X \rightarrow \mathbb{P}^{1}$ corresponds to the field extension $K(t) \rightarrow K(X)$ by sending $t \mapsto h$ i.e. on the level of closed points, we have

$$
\varphi(\alpha)= \begin{cases}{[1: h(\alpha)]} & h(\alpha) \neq 0 \tag{6}\\ {[0: 1]} & h(\alpha)=0\end{cases}
$$

Hence $\varphi^{*}\left([1: 0]=P\right.$ while $\operatorname{varphi}^{*}([0: 1])=Q$. Recall Proposition 6.1, we have

$$
1=\operatorname{deg}\left(\varphi^{*}([1: 0])=\operatorname{deg} \phi * 1\right.
$$

thus $\operatorname{deg} \varphi=1$ and then $K(X)=K(t), X, \mathbb{P}^{1}$ are birational.
Example 6.4. Elliptic curves Elliptic curves are smooth cubic curves (degree 3) in \mathbb{P}_{k}^{2}. For simplicity, assume char $k \neq 2$, then it can be described by

$$
y^{2}=4 x^{3}+g_{2} x+g_{3}
$$

(it can be homogenized by replace x, y by $x / z, y / z$). This form is called Weierstrass form. Now to describe the group structure on the set of closed points of elliptic curve E. Let $\mathrm{Cl}^{0}(E)$ be the kernel of $\operatorname{deg}: \mathrm{Cl}(E) \rightarrow \mathbb{Z}$ and we will show there is an 1-1 correspondence between E and $\mathrm{Cl}^{0}(E)$. (Here we abuse of notation: E means the set of closed points in E, when we want to take it as a group).

We just consider the special case of elliptic curves

$$
y^{2} z-x^{3}+x z^{2}=0
$$

then let $P_{0}=[0: 1: 0] \in E$ and $\div(z)=3 P_{0}$ on E due to the following equations

$$
\left\{\begin{aligned}
y^{2} z-x^{3}+x z^{2} & =0 \\
z & =0
\end{aligned}\right.
$$

have 3 zeros at $z=0, x=0$.

Then let $L \subset \mathbb{P}^{2}$ be a line $a x+b y+c z=0$ and let $l=a x+b y+c z$ and $L=\div(l)$ on \mathbb{P}^{2}. According to Bezout's theorem and a line is of degree $1, L \cap E$ has 3 points (including multiplicities, then we have

$$
\div\left(\frac{l}{z}\right)=P+Q+R-3 P_{0}
$$

which means that

$$
[P+Q+R] \sim 3\left[P_{0}\right]
$$

on E. Note that $\operatorname{deg}\left(P-P_{0}\right)=0$ for any point P, hence $P-P_{0} \in \mathrm{Cl}^{)}(E)$, then we give a map $\alpha: E \rightarrow \mathrm{Cl}^{0}(E)$ by

$$
P \mapsto\left[P-P_{0}\right]
$$

Now claim that it is injective: if $P-P_{0} \sim Q-P_{0}$, then $P-Q \sim \div(f)$ for some rational function f, if $P \neq Q$, then $E \simeq \mathbb{P}^{1}$ by $F: E \rightarrow \mathrm{Cl}^{0}(E)$

$$
x \mapsto[1: f(x)]
$$

when $x \neq Q$ and $Q \mapsto[0: 1]$ and note that $F *([1: 0])=P$, thus $\operatorname{deg} F=0$. However, an elliptic curve is not rational, which leads to contradiction. Therefore, we must have $P=Q$.

Next to show it is surjective: For any $D=\sum n_{i} P_{i} \in \mathrm{Cl}^{0}(E)$ with $\sim n_{i}=0$, then

$$
\sum n_{i} P_{i}=\sum n_{i}\left(P_{i}-P_{0}\right)
$$

let L be a line in \mathbb{P}^{2} determined by P_{0} and P_{i}, and let P_{0}, P_{i}, R_{i} be $L \cap E$ and

$$
\begin{equation*}
P_{0}+P_{i}+R_{i} \sim 3 P_{0} \tag{7}
\end{equation*}
$$

Hence $P_{i}-P_{0} \sim-\left(R_{i}-P_{0}\right)$.
Then if $n_{i}<0$, we may replace $P_{i}-P_{0}$ by $-\left(R_{i}-P_{0}\right)$ so that we may assume $n_{i} \geqslant 0$. In particular, $\sum n_{i} \geqslant 0$. If $\sum n_{i}=1$ with all $n_{i} \geqslant 0$, then $D=P_{i}-P_{0}$, which is in the image. Now we argue by induction on $\sum n_{i}$.

Observe that $P_{1}-P_{0}+P_{2}-P_{0} \sim P_{0}-R$ for some R (recall the relation 7 , we get such R be consider the intersection between E and a line determined by P_{1}, P_{2}) Then there is a point T such that $T-P_{0} \sim P_{0}-R$ by consider the intersection between the E and the line given by T, P_{0}. Then we can use this observation to proceed the induction.

References

[Ati69] Michael Atiyah, Introduction to commutative algebra, Addison-Wesley, 1969.

[^1]
[^0]: Received by the editors June 15, 2021.
 1991 Mathematics Subject Classification. Primary.

[^1]: SUSTECH
 Email address: 11711505@mail.sustech.edu.cn

