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NOTE ON COMMUTATIVE ALGEBRA

LIANG TONGTONG

Abstract. This is a short note on commutative algebra.
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1. Going-up and Going-down

Theorem 1.1. Suppose f : A ↪→ B is an integral extension, then the induced
scheme morphism f∗ : SpecB → SpecA is surjective.

Theorem 1.2 (Going-up). Let A,B be two integral domain and f : A ↪→ B be an
integral extension. For any two prime ideals p1 ⊂ p2 in A and a prime ideal q1 in
B such that q1 ∩A = p1, then there exists q2 in B such that q2 ∩A = p2.

Going-down property: Let A ↪→ B be an integral extension, p2 ⊂ p1 ⊂ A and
q1 ⊂ B be prime ideals such that p1 ∩ A = p1, then there exists q2 ∈ SpecB such
that q2 ∩A = p2.

Theorem 1.3 (Going-down). When A ⊂ B are rings and A is integrally closed,
then the going-down property holds and the induced morphism f∗ : SpecB → SpecA
is an open map.

To prove this theorem, we need several lemmas.

Lemma 1.4 (Heuristic). Let A ⊂ B be rings such that B is integral over B, then
for any prime ideal p ⊂ B there exists a prime ideal P in B such that P ∩A = p.

Proof. First, we do localization with respect to p and Ap → Bp is still an integral
extension. If there exists a prime ideal PBp in Bp over pAp, then P = PBp ∩ B
satifies that P ∩A = p.
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2 LIANG TONGTONG

Hence the problem is reduced to local case that we may assume A is a local ring
with maximal ideal m. Next we just need to find a prime ideal n in B such that
n ∩ A = m. A good candidate for such n is the maximal ideal in B that contains
mB, but we still need to show that mB is a proper ideal in B.

Argue by contradiction to show that mB is a proper ideal in B. If mB = B,
then there exists b1, . . . , bn ∈ B and m1, . . . ,mn ∈ m such that∑

mibi = 1

Then we have a subsring A[b1, . . . , bn]. Note that all bi is integral over A, then
M = A[b1, . . . , bn] is a finitely generated A-module and by previous assumption,
M ⊂ mM . By Nakayama’s lemma, M = 0, contradiction.

Hence there exists a maximal ideal n ⊂ B such that n is over m. Claim that
n ∩ A is a maximal ideal in A, because B/n is a field integral over A/(n ∩ A), for
any non-zero element x ∈ A/(n ∩ A), x−1 ∈ B and x−1 is integral over A/(n ∩ A)
i.e there exists a monic polynomial with A/(n ∩A) such that

x−n + a1x
−n+1 + · · ·+ an = 0

Then we have

x−1 = −(anx
n−1 + · · ·+ a1)

which shows that A/(n ∩A) is a field. Here we finish the proof. �

Lemma 1.5. Let A ⊂ B be integral domains, for given q1 in SpecB and p1 in
SpecA, then there exists a minimal prime ideal q of SpecB such that q ∩ A is a
minimal prime ideal in SpecA.

This is a straight result from Heuristic lemma. Hence we may assume A,B are
integral domains. However, the key problem is that we have guaranteed
that such q ⊂ q1 yet and that we will do next.

Next we show that the condition that A is integrally closed is essential.

Example 1.6. Let k = C, B = k[x, y] and A = {f ∈ B | f(0, 0) = f(0, 1)}.
The picture of SpecB is the plane k2 and we get SpecA by gluing P1 = (0, 0) and
P2 = (0, 1) in k2 to be one point P and the induced map SpecB → SpecA is the
quotient map. Let C be the x−axis in k2 and C be the image of x−axis in SpecA.
However, the we have P ∈ C and P2 over P , but we can find an irreducible closed
subset in SpecB such that it contains P2 and its image is C, because the preimage
of C is C and P2 /∈ C. Here the going-down property fails.

(The question is: How to show B is integral over A and A is not integrally
closed?)
B is integral over A: x ∈ A, we just need to show for any f(y) ∈ B, f(y) is

integral over A: consider (f(y) − f(0))(f(y) − f(1)) ∈ A, then f2(y) − (f(0) +
f(1)f(y) + f(0)f(1)− (f(y)− f(0))(f(y)− f(1)) = 0 clearly.
A is not integrally closed: Consider

(x+ y − 1
2 )2 − (y − 1

2 )2

x
= 2y − 1

which is in K(A) but not in A. However, (2y − 1)2 is in A, then 2y − 1 is a zero
for a monic polynomial over A with variable T :

T 2 − (2y − 1)2
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Now suppose A ⊂ B are integral domains and A is integrally closed.
Observation 1: We may assume B is the integral closure of A in L.
Let L be the fraction field of B and K be the fraction field of A, then L/K is

an algebraic field extension clearly. Let A be the integral closure of A in L, if the
going-down property holds for A, then it holds for B because A ⊂ B ⊂ A.

Observation 2: If for finite field extension L/K, the going-down properties holds,
then for infinite algebraic field extensions, it still holds.

Suppose it is true for finite field extension, then for an algebraic field extension
L/K, we have a filtration:

K = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Ln ⊂ · · · ⊂ L

where Ln/Ln−1 is a finite field extension. Let Ai be the integral closure of A in
Li, and A = ∪∞i=1Ai. For given prime ideals q ⊂ p in A and Q in A such that
P∩A = p. Let Pn = P∩Ln, and apply the going-down property for the finite field
extension Ln/K to get Qn ⊂ Pn in An such that Qn ∩A = q. Clearly, ∪∞i Qi ⊂ A
is a prime ideal and is what we need.

Observation 3: We may assume L/K is a normal finite extension.
We just take the normal closure of L then restrict the prime ideals.
Observation 4: For a finite normal extension L/K, we consider K ⊂ Ks ⊂ L,

where K/Ks is separable and L/Ks is purely inseparable. Hence we just need to
check two cases: finite Galois extension (normal and separable) and finite normal
purely separable extension.

Lemma 1.7. Suppose L/K is a finite Galois extension with Galois group G, A is
integrally closed in K, then for any prime ideal p, G acts transitively on the set of
prime ideals of B lying over p.

Proof. Suppose q and q′ are two prime ideals of B lying over p. We need to show
there is σ ∈ G such that σ(q) = q′.

Claim: q′ ⊂
⋃
σ∈G σ(q). For any x ∈ q′ and y =

∏
σ′∈G σ

′(x) ∈ K ∈ q′, hence
y ∈ q′ ∩K. Since A is integrally closed, y ∈ A, hence y ∈ p actually. So y ∈ σ(q)
for any σ ∈ G. Because σ(q) is a prime ideal, there exists σ′(x) ∈ σ(q), then
x ∈ σ′−1σ(q). Thus q ⊂

⋃
σ∈G σ(q).

By prime avoidance, there exists a σ(q) such that q ⊂ σ(q). However, q′ ∩ A =
σ(q) ∩ A = p, so q′ = σ(q), because for integral domains, (0) is unique prime ideal
lying over (0)). �

Note that if L/K is a finite normal and purely-inseparable field extension , then
Aut(L/K) = {id} and we may assume the characteristic is p. For x ∈ L, there is
some integer v such that xp

v

= α ∈ K and xp
v − α is the minimal polynomial.

Recall a lemma in field theory:

Lemma 1.8. Suppose K is of characteristic p, if f(x) ∈ K[x] is irreducible, then
there exists a non-negative integer v and an irreducible separable polynomial g(x) ∈
K[x] such that f(x) = g(xp

v

)

Sketch proof. We argue it by induction and notice that if f is not separable, then
the formal derivation f ′ = 0, which means that for each non constant item xm, m
is a multiple of p. Hence there is a polynomial f1 such that f(x) = f1(xp). We
proceed this procedure until we have a separable polynomial. �
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Lemma 1.9. Let A ⊂ B be integral domains and A is integrally closed. If x ∈ B
is integral over an ideal A, then the minimal polynomial of x over K(A) is of the
form

xn +

n∑
i=1

cix
n−i

where ci ∈ A.

A proof for more general case is in P63 Proposition 5.15 in [Ati69].

Proof. Clearly, x is algebraic over K(A), suppose the minimal polynomial is

xn + a1x
n−1 + · · ·+ an = 0

and we let L be the splitting field of this irreducible polynomial, so all the conjugates
x1, . . . , xn are in L and ai is given by symmetric polynomials in xi. Note xi is
integral over A as x, then the coefficients ai are integral over A. Since A is integrally
closed, ai ∈ A for each i. �

Lemma 1.10. Suppose L/K is a finite normal and purely inseparable extension,
for any prime ideal p ∈ SpecA, the fiber over p consists of exactly one element.

Proof. Suppose there are two prime ideals, q, q′ of B lying over p. We need to show
q = q′. Suppose x ∈ q, then xp

v

= α ∈ A (due to previous lemma) for some integer
v ∈ N, so α ∈ q ∩A = p, then xp

v ∈ q′ and x ∈ p′. Thus q ⊂ q′. Similarly, we have
q′ ⊂ q. Finally, q = q′.

The existence is given by Heuristic approach. �

Theorem 1.11. Suppose f : A → B is an integral extension between integral
domains and A is integrally closed, then f∗ : SpecB → SpecA is an open map.

Proof. Since Zariski topology is generated by distinguished open set Dx = {q ∈
SpecB | x /∈ q}, x ∈ B, we just need to show f∗(Dx) is open.

Let the minimal polynomial of x over K = K(A) be

(1) xn + a1x
n−1 + · · ·+ an

where ai ∈ A by Lemma 1.9, then we claim that f∗(Dx) =
⋃n
i=1Dai .

By previous lemmas, we first assume L/K is a Galois extension and B is the
integral closure of A in L and let G be the Galois group. Note that for any prime
ideal q ∈ SpecB, f∗(q) = f∗(σ(q)). Then we have

(2)

f∗(D(x) =
⋃
σ∈G

f∗(σ(Dx))

=
⋃
σ∈G

f∗(Dσ(x))

= f∗(
⋃
σ∈G

Dσ(x))

= f∗(V ({σ(x) | σ ∈ G})c)

Note that ai acts on B via the extension f , let a′i = f(ai) and we rewrite equation
1 to be

(3) xn + a′1x
n−1 + · · ·+ a′n = 0
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and if q ∈ V ({σ(x) | σ ∈ G}), then q ∈ V (a′1, . . . , a
′
n) because a′i is given by

polynomial in σ(x). Conversely, if q ∈ V (a′1, . . . , a
′
n), then consider B/q, xn = 0 in

B/q, hence x ∈ q, moreover, σ(x) ∈ q for all σ ∈ G. Hence we have

V ({σ(x) | σ ∈ G}) = V (a′1, . . . , a
′
n)

Back to equation 2, we have

f∗(Dx) = f∗(V (a′1, . . . , a
′
n)c) = f∗(

n⋃
i=1

Da′i
) =

n⋃
i=1

f∗(Da′i
) =

n⋃
i=1

Dai

Then we may assume L/K is a finite normal and purely inseparable extension,
then by Lemma 1.10, f∗ is injective. For any x ∈ B, there is a natural number v
such that xp

v ∈ A, then f∗Dx = Dxpv clearly. f∗ is an open map clearly. �

Theorem 1.12. Following the condition in previous theorem, f : A → B has the
going-down property.

Proof. We just follows Lemma 1.5 to show we have such minimal prime ideal that
is contained in q1. First, we can find q′ such that q′ ∩ A is a minimal prime ideal
contained in p1. Then consider the induced map A/(q′∩A)→ B/q′ and we have q′1
in B/q′ such that q′1 ∩A = p1. Since the Galois group acts transitively on the fiber
of p, then we can find σ in the Galois group such that σ(q′1) = q1, then q = σ(q′)
is what we need, because σ(q′) ∩A = p and q ⊂ q1.

�

The trick of Galois group action( group action):

Proposition 1.1. Let G be a finite group of automorphisms of a ring A, p be a
prime ideal of AG (G-fixed points of A) and X be a set of prime ideals P in A such
that P ∩AG = p , then G acts transistively on X.

Proof. Let P and P′ be two elements in X, we now claim that P′ ⊂
⋃
σ∈G σ(P).

If the claim is true, then by prime avoidance, there exists some σ′ ∈ G such that
P ⊂ σ′(P). Since P′ ∩AG = σ′(P) ∩AG = p, then P′ = σ′(P).

Now we prove the claim: for any x ∈ P′, consider
∏
σ∈G σ(x) ∈ AG ∩ P′ = p,

then
∏
σ∈G σ(x) ∈ P. Hence there exists σ ∈ G such that σ(x) ∈ P, which is

equivalent to say that x ∈ σ−1P, then x ∈
∏
σ∈G σ(x). �

2. Dimension theory

Definition 2.1. Let A be a Noetherian semilocal ring and m be the Jacobson
radical of A, for an ideal I in A satisfying mv ⊂ I ⊂ m for some postive integer v,
then we define the associated graded ring GI(A) to be

GI(A) =

∞⊕
n=0

In/In+1

If M is a finitely generated A-module, then the associated graded module is
defined as

GI(M) =

∞⊕
n=0

InM/In+1M.
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Remark 2.2. Note that A/I is an Artin ring, we just need to show A/I is of
dimension 0 i.e. every prime ideal in A that contains I is a maximal ideal. Let p
be a prime ideal in A that contains I, then mv ⊂ p and m ⊂ p so that the product
of all maximal ideals in A is contained in p, hence p is one of maximal ideals.

Proposition 2.1. Let A be a Noetherian semilocal ring and I is such a ideal in
the previous definition, then

dimA = dimGI(A)

Proof. �

Application of dimension theory:

Theorem 2.3 (Zariski lemma). Suppose A is a finitely generated k-algebra and m
is a maximal ideal of A, then A/m is a finite algebraic extension of k.

Proof. Note that the dimension of A/m is 0, then the transcendental degree of A/m
is 0, hence A/m is a algebraic extension of k. Since A/m is finitely generated, A/m
is a finite k extension. �

3. Geometric viewpoint of primary decomposition

Given a spectrum SpecA, the associated points are the generic points of irre-
ducible components of support of some global section i.e. for some s ∈ A,

Supp(s) = {p ∈ SpecA | s
1
6= 0 ∈ Ap}

namely if p ∈ Supp(s), then Ann(s) ⊂ p, which means that

Supp(s) = V (Ann(s))

For any A-module, we just take the global section of the quasicoherent sheaf M̃
so that we can define associated point of A-modules.

The isolated points is the generic points of irreducible components of SpecA
i.e. the support of the function 1, while the other associated points are called
embedded points. (The ideal is to replace the category of A-modules by the
category quasicoherent sheaves over SpecA, then think it geometrically.)

Proposition 3.1. Suppose A is a reduced ring, then SpecA has no embedded points.

Proof. If A is integral, for any non-zero a ∈ A, Ann(x) = (0), hence the support is
SpecA. Since SpecA is irreducible, the unique associated point is the generic point
of SpecA i.e. [(0)].

For general case, if f ∈ A is a function on a reduced affine scheme SpecA, then
claim that Supp(f) = D(f): first, clearly D(f) ⊂ Supp(f) and Supp(f) is a closed
subset, we just need to show Supp(f) is the smallest closed set to contain D(f).
Suppose V (I) ⊃ D(f) for ideal I, then

I ⊂
⋂

p∈D(f)

p

since A is reduced, so is Af , hence I = 0 in Af , i.e. for any s ∈ I, there is a positive
integer n such that sfn = 0 in A. Thus we have snfn = 0 and sf = 0, due to the
reducedness. Then I ⊆ Ann(f).

Now we conclude that, for any s ∈ I, V (Ann(f)) ⊂ V (s), then Supp(f) ⊂ V (I).
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Next to show D(f) is the union of irreducible components that meets D(f).
Suppose V (p) is an irreducible component of SpecA i.e. p is a minimal prime ideal
in A and V (p)∩D(f) 6= ∅, then there is a prime ideal p′ such that p ⊂ p′ and f /∈ p′

i.e. f /∈ p, then p ∈ D(f). Hence V (p) = {p} ⊂ D(f).
Therefore Supp(f) is a union of irreducible components and each irreducible

component V (p) has no embedded point (because A/p is an integral domian). �

An important property of associated points: The natural map

M →
∏

associated primes p

Mp

is injective. The elements in the kernel of this map vanishes at each associated
points, which means that their support are empty, hence their zero functions on
SpecA i.e. 0 in M .

4. Regularity and DVRs

Theorem 4.1. Suppose (A,m, k) is a Noetherian local ring, then dimA 6 dimk m/fm
2.

Proof. Since A is a Noetherian, m is a finitely generated A-module. Then by
Nakayama’s lemma, we may assume m = (x1, . . . , xn) such that {xi}ni=1 is a k-
basis of vector space m/m2. Then by Krull’s height theorem, m is the minimal
prime ideal that over (x1, . . . , xn), then the height of m is not bigger than n i.e.
dimA 6 dimk m/m

2. �

Definition 4.2. (A,m, k) is a regular local ring, if A is a Noetherian ring and
dimA = dimk m/m

2. If a Noetherian ring A is saied to be regular, then it is regular
at all its prime ideal.

Proposition 4.1. A dimension 0 Noetherian local ring is regular if and only if it
is a field.

Proof. The proof is straightforward, Since it is of dimension 0 and regular, then its
maxmial ideal is 0. �

Lemma 4.3. A surjection between to integral domains of the same dimension is
an isomorphism.

Proof. Let A,B be two integral domain of the same dimension and f : A → B be
a surjective ring homomorphism. The kernel ker f must be a prime ideal p with
A/p ∼= B. Since A/p and A have the same dimension, p must be a minimal prime
ideal of A. Because A is an integral domain, p = 0, then f is an isomorphism. �

Theorem 4.4. Suppose (A,m, k) is a regular local ring of dimension n, then A is
an integral domain.

Proof. We prove it by induction on n. When n = 0, it is clearly true by previous
proposition. Suppose it is true for dimension less than n.

Take f ∈ m/m2, then A/(f) is a Noatherian local ring. According to Krull’s
principal ideal theorem, dimA/(f) > n − 1. Observe that the Zariski cotangent
space at A/(f) i.e. (m/(f))/(m/(f))2 = (m/m2)/(f) is of dimension n− 1 clearly.
By Theorem 4, A/(f) is a regular local ring of dimension n−1. Apply the inductive
hypothesis, A/(f) is an integral domain.
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We just need to show that any minimal prime ideal in A is (0). Let p ⊂ A be
a minimal prime ideal, we claim that A/p is a regular local ring of dimension n.
The Zariski cotangent space of A/p is a quotient of m/m2, hence its dimension is
at most n. Since p is a minimal prime ideal of A, dimA/p = dimA = n, then by
Theorem 4, A/p is a regular Noetherian local ring of dimension n. Now we replace
A by A/p in the argument in the first paragraph, then A/(p + (f)) is an integral
domain. Note that the quotient morphism A/(f)→ A/(p+ (f)) is an isomorphism
by Lemma 4.3.

Thus p = p + (f) i.e. p ⊂ fA. Every element in p is of the form fv for v ∈ A.
Further, since f /∈ p, v ∈ p. We have p ⊂ fp, then p = fp. Then apply Nakayama’s
lemma (global version), we conclude that p = 0. �

Next we focus on the case of dimension 1.

Theorem 4.5. Suppose (A,m, k) is a Noetherian local ring of dimension 1, then
the following are equivalent:

(a) (A,m) is regular.
(b) m is principal
(c) all the non-zero ideals are of the form mn.

(c)’ A is a principal ideal domain.

Proof. (a) =⇒ (b): Since A is regular and dimA = 1, then dimk m/m
2 = 1. Let

u ∈ m \ m2 be a representative of a generator in m/m2. By Nakayama’s lemma, u
generates m, hence m is a principal ideal.

(b) =⇒ (a): It is obvious. Since m = (t), then dimk m/m
2 6 1, while 1 =

dimA 6 dimk m/m
2. Thus dimA = dimk m/m

2 = 1 and A is regular.
(a) =⇒ (c): Let I ⊂ A be a non-zero ideal, then there exists n such that I ⊂ mn

and I 6⊂ mn+1. We take t ∈ I \mn+1. Note that dimk m
n/mn+1 = 1 because mn =

(un) (recall previous argument), hence t generates mn/mn+1 as a representative.
By Nakayama’s lemma, t generates mn. Hence mn = (t) ⊂ I ⊂ mm+1 and I = mn.
In total, all the non-zero ideals of A is of the form mk for some positive integer k.

(c) =⇒ (a): Argue by contradiction. Suppose A is not regular, then dimk m/m
2

is at least 2. Then there is an element x ∈ m \ m2, such that m2 ( (u,m2) ( m,
contradiction.

(c)′ is equivalent to (c) clearly. �

Definition 4.6. Suppose K is a field, a discrete valuation on K is a function
v : K∗ → Z such that v(xy) = v(x) + v(y) and if x+ y 6= 0,

v(x+ y) > min{v(x), v(y)}

(we set v(0) =∞ for convenience). The valuation ring Ov with respect to v is
defined to be

Ov = {x ∈ K | v(x) > 0}

We say a ring A is a discrete valuation ring or DVR if there is a discrete
valuation v on the fraction field K = K(A) such that A is the valuation ring with
respect to v.

Proposition 4.2. (A,m) is a DVR if and only if it satisfies the one of the equivalent
conditions in 4.5.
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Proof. We first to show a DVR is a Noetherian local principal ideal domain. First,
it is a local ring: let m = {x ∈ A | v(x) > 0}, it is an ideal clearly. For x ∈ A \ m,
then v(x) = 0 and v(x−1x) = v(x−1) + v(x) = v(1) = 0, then v(x−1) = 0 with
x−1 ∈ A. Hence m is the unique maximal ideal in A. Next to show m is a principal
ideal: take t ∈ m such that v(u) = 1, then for any x ∈ m v(xu−1) = v(x)−v(u) > 0
hence xu−1 ∈ A and m = (u). Let In = {x ∈ A | v(x) > n, then we have a filtration

A = I0 ) m = I1 ) I2 ) I3 ) I4 · · · ) In ) . . .

We claim that all the non-zero ideals are of the form In. Let I ⊂ A be an ideal,
then take x ∈ I such that v(x) = n is the least one in I, then I ⊂ In. Conversely,
for any y ∈ I, v(x−1y) = v(y)− v(x) > 0, then x−1y ∈ A, hence I = (t). Similarly,
(t) = In. Now we have proven the claim. In particular, suppose m = (u), all
the non-zero ideals are of the form (un). Then A is a principal ideal domain of
dimension 1(it is a domain because it is a subring of a field). Hence A satisfies the
conditions in Theorem 4.5.

Conversely, suppose A is a regular Noetherian local and m = (u), we define the
valuation on K = K(A) by sending v(u) = 1 and v(i) = 0 if i is a unit in A.
Claim that all non-zero element in K is of the form aun with an integer n: for any
x, y ∈ A, they are of the forms x = bxn and y = cxm for b, c ∈ A∗ and non-negative
integers n,m, then

x

y
= bc−1xn−m

where bc−1 is still a unit in A. Hence we prove the claim and following the claim,
the valuation is well-defined by extending v(axn) = n. Clearly, if v(x) > 0, then
x ∈ A. Hence A is a DVR. �

Theorem 4.7. Suppose (A,m) is a Noetherian local domain of dimension 1, then
A is a DVR if and only if A is integrally closed.

Proof. When A is a DVR, it is a principal ideal domain, in particular, it is a UFD,
hence it is integrally closed. Conversely, suppose A is integrally closed, we are going
to show that m is a principal ideal. For any non-zero x ∈ m, (x) is a m-primary

(because m is of height 1 i.e. the unique non-zero prime ideal in A). Then
√

(x) = m
i.e. for any y ∈ m, there exists a positive integer ny such that yny ∈ (x). Since m
is finitely generated, there exists n such that mn ⊆ (x) and mn−1 6⊆ (x). Choose
y ∈ mn−1 such that y /∈ (x), then y

xm ⊆
1
xm

n ⊆ A, hence y
xm is an ideal in A and

either y
xm ⊂ m or y

xm = A. We want to show that y
xm = A then m = x

yA is a

principal ideal.
It suffices to show that y

xm 6⊆ m and we argue by contradiction. Suppose y
xm ⊂ m,

then y
x determines an A-linear map from finitely generated A-module m to itself.

Take a list of generators and we have an A-matrix T . Note that T − y
xI = 0 and

det(T − y
xI) = 0, hence the monic polynomial with coefficients in A is det(T − tI)

in variable of t. Then y
x is integral over A and y

x ∈ A because A is integrally closed.
Hence y ∈ (x), which leads to contradiction. �
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5. Decomposition and Dedekind domain

We first do some observation: suppose A is a Noetherian domain and a ⊆ A is
a non-zero ideal. We have known that the primary decomposition exists, hence

a =
⋂

primary

q

If A is of dimension 1, then every non-zero prime ideal is a maximal ideal and for a
primary decomposition, there is no embedded prime in the set of associated prime
ideals of a. Note that for two distinct primary ideals q and q′ where

√
q = m and√

q′ = m′ are two distinct maximal ideal, then claim that q + q′ = 1. If q + q′ 6= 1,
then there exists a maximal ideal m′′ to contain q + q′, further m′′ contain

√
q and√

q′ i.e. m′′ contain m + m′ = (1), contradiction. Since all distinct primary ideals
are coprime, we may write

a =
∏

primary

q

Now the question is: when would every p-primary ideal of A be a power of
p? The answer is when A is integrally closed (necessary and sufficient condition).
Now we move on to this answer.

Observation

• q is p-primary in A if and only if qAp is pAp-primary.
• when q is p-primary, then q = pn if and only qAp = (pAp)n.

Hence we may reduce the question to local case.
Now the question is: For a Noetherian local domain (A,m) of dimension

1, when would every m-primary ideal be a power of m?
Further observation:

• Every non-zero ideal in A is m-primary.
• q is m-primary if and only if

√
q = m.

Thus, the local question becomes: For a Noetherian local domain (A,m) of
dimension 1, when would every non-zero ideal be of the form mn, n ∈ N?

Recall Theorem 4.5, we see that the answer is DVR!

Theorem 5.1. Let A be a Noetherian domain of dimension 1, then every primary
decomposition is a prime decomposition if and only if for each non-zero prime ideal
p, Ap is a DVR.

Recall that A is integrally closed if and only if Ap is integrally closed for each
prime ideal p ∈ SpecA. Then by Theorem 4.7, we have

Theorem 5.2. Let A be a Noetherian domain of dimension 1, then every primary
decomposition is a prime decomposition if and only if A is integrally closed.

Definition 5.3. A is a Dedekind domain if A is an integrally closed Noetherian
domain of dimension 1.

Example 5.4. Let K be a finite field extension of Q and OK be the integral closure
of Z in K (we may also call it the ring of integers in K.) Now we claim that OK is
a Dedkind domain.

First, OK is integrally closed clearly. Second, Z ↪→ OK is an integral morphism,
and Z is a Dedekind domain clearly, hence by going-up and going-down, dimOK =
dimZ = 1. Finally, it remains to show OK is a Noetherian. We need the following
lemma to show it.
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Lemma 5.5. Given a domain A and K = K(A) the fraction field with character-
istic 0, let L/K be a finite separable extension of degree n and B be the integral
closure of A in L. Then there exists a basis {v1, . . . , vn} in L such that

B ⊆ Av1 + · · ·+Avn

Thus, as a consequence, if A is Noetherian, so is B.

Proof. Observe that for any non-zero v ∈ L, there is an a ∈ A such that av ∈ B
(there is an a such that av is integral over A because v is algebraic over K, the
fraction field of A.)

Thus we may assume {w1, . . . , wn} is a basis of L over K with wi ∈ B. Note that
〈v, v′〉 = Tr(vv′) is a non-degenerate bilinear form of L over K when it is separable.
Let (v1, . . . , vn) be the dual basis of (w1, . . . , wn) namely 〈vi, wj〉 = δij for each i, j.
((v1, . . . , vn) is still a basis of L over K because they are linearly independent.)

Then ∀b ∈ B, write b =
∑n
i=1 αivi where αi ∈ K. Then

〈b, wj〉 =

n∑
i=1

αi 〈vi, wj〉 =

n∑
i=1

αiδij = αj

because bwj ∈ B, Tr(bwj) ∈ B(the trace is the sum of all its Galois conjugate
elements and all its Galois conjugate elements is integral over K clearly), then
Tr(bwj) = B ∩K = A i.e. αj ∈ A. �

In general, there is proposition:

Theorem 5.6 (Krull-Akizuki). Let A be a Noetherian domain of dimension 1 with
fraction field K, if L/K is a finite extension and B ⊂ L is an arbitrary subring
that contains A, then B is a Noetherian domain.

We need to prove that for any ideal I in B, I is a finitely generated B-module.
Observe that I ⊗AK is a K-vector space in L, hence I ⊗AK is of finite dimension,
namely we say that I is an A-module of finite rank. We need the following lemma
to prove the theorem.

Lemma 5.7. Let A and L be the ones in the assumption of the theorem and let M
be a torsion-free A-module of finite rank r. Then for 0 6= a ∈ A, we have

l(M/aM) 6 r ∗ l(A/aA)

Proof. First, we assume M is finitely generated. Take x1, . . . , xr in M linearly
independent over A and let E = ⊕ri=1Axi, then there exists t ∈ A such that for any
y ∈ M , ty ∈ E (We just find such t′ for each generator of M , then multiply them
together to get such t). Let C = M/E and tC = 0 i.e. C is totally an A-torsion
module and is finitely generated obviously. Then there exists a filtration of C:

C = C0 ⊃ C1 ⊃ · · · ⊃ Cn = 0

such that Ci/Ci+1 = A/pi for some non-zero prime ideal pi and actually, such
prime ideals are maximal ideals (the existence of this filtration is in Professor Qiu’s
notes Proposition 4.11 P75 and since A is an integral domain of dimension 1, every
non-zero prime ideal is a maximal ideal). Hence C is of finite length clearly. For
any 0 6= a ∈ A and any positive integer n, we have an exact sequence

E/anE −→M/anM −→ C/anC −→ 0
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this gives

(4) l(M/anM) 6 l(E/anE) + l(C)

Since M and E are torsion-free, we have aiE/ai+1E ∼= E/aE and similar for M ,
then we may rewrite the equation 4 into

(5) nl(M/aM) 6 nl(E/anE) + l(C)

for each n. Thus l(M/aM) 6 l(E/aE). Note that E ∼= Ar, hence l(E/aE) =
rl(A/aA). This completes the proof in the case finitely generated modules.

In general case, take any finitely generated submodule N in M/aM and let N
be the preimage of N in M , which is finitely generated. Then

l(N) = l(N/(N ∩ aM)) 6 l(N/aN) 6 rl(A/aA)

Since this inequation is independence of the choice of finitely generated submodules
in M/aM , so that M is in fact finitely generated, otherwise we can find a finitely
generated submodule in M of arbitrarily length. Hence l(M/aM) 6 rl(A/aA). �

Remark 5.8. We need C to be torsion, otherwise, consider C = Z2 and A = Z,
which is not of finite length.

Now we prove the theorem.

Proof of the theorem. We may replace the field L by the fraction field of B. For
any non-zero ideal I in B, I is a finite rank A-module. Take 0 6= a ∈ I ∩ A,
l(I/aI) 6 l(A/aA). By Krull’s principal ideal theorem, A/aA is of dimension 0,
then A/aA is an Artinian ring (Noetherian and dimension 0), hence l(A/aA) is
finite. Thus l(I/aI) is finite i.e. I/aI is a finite length A-module. Moreover, I is a
finitely generated B-module. �

Remark 5.9. Actually, such B is of dimension at most 1. If P is a non-zero prime
ideal in B, B/P is a Noetherian domain of dimension 0 i.e. an Artinian ring,
therefore B/P is a field, namely P is a maximal ideal and dimB = 1.

6. Divisor on curves

Definition 6.1. Let f : X → Y be a finite morphism between smooth curves. We
define

f∗ : WeilY →WeilX

as follows, for any closed point Q ∈ Y , let t be a local parameter of Q i.e. a
generator of the prime ideal in the DVR OQ, then define

f∗Q =
∑

f(P )=Q

vP (f∗(t))[P ]

where P are closed points and note that f induces a morphism at stalk-level OP →
OQ.

We can extend this definition from prime divisors to any divisor freely.

Remark 6.2. f∗Q is independent of the choice of local parameter t because two
local parameters is in difference of a unit in the local ring.

Since f is a finite morphism, then f−1(Q) is a finite set, hence it is well defined.
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For a principal divisor div(f) in Y , f∗(div(g)) = div(g ◦ f) (we may identify
g ◦ f as the image of g via the morphism induced by f at the sheaf-level. Hence,
we actually have a morphism

f∗ : Cl(Y )→ Cl(X)

Proposition 6.1. Let f : X → Y be a finite morphism between smooth curves, the
the degree of field extension K(Y ) ↪→ K(X) induced by f is called the degree of
f , denoted by deg f . Then for any divisor D ∈Weil(X), we have

deg(f∗D) = deg(f) ∗ deg(D)

Corollary 6.1. For a principle divisor div(h) on X, deg(h) = 0. Hence there is a
surjective homomorphism

deg : Cl(X)→ Z

However, in general, deg is not injective. Next we will show the necessary and
sufficient condition that deg is injective.

Example 6.3. Let X be a projective and smooth curve, then if there exists a pair
of distinct closed points P,Q ∈ X such that P − Q = div(h) for some h ∈ K(X),
then X ' P1 i.e X is birational equivalent to a projective line. Hence cl(X) ∼= Z if
and only if X ' P1.

First, div(h) = P −Q means for a rational function h on X, h has a simple zero
at P and a simple pole at Q.

Fact, there is a rational map ϕ : X → P1 corresponds to the field extension
K(t)→ K(X) by sending t 7→ h i.e. on the level of closed points, we have

(6) ϕ(α) =

{
[1 : h(α)] h(α) 6= 0
[0 : 1] h(α) = 0

Hence ϕ∗([1 : 0] = P while varphi∗([0 : 1]) = Q. Recall Proposition 6.1, we have

1 = deg(ϕ∗([1 : 0]) = deg φ ∗ 1

thus degϕ = 1 and then K(X) = K(t), X,P1 are birational.

Example 6.4. Elliptic curves Elliptic curves are smooth cubic curves (degree 3)
in P2

k. For simplicity, assume chark 6= 2, then it can be described by

y2 = 4x3 + g2x+ g3

(it can be homogenized by replace x, y by x/z, y/z). This form is called Weier-
strass form. Now to describe the group structure on the set of closed points of
elliptic curve E. Let Cl0(E) be the kernel of deg : Cl(E) → Z and we will show
there is an 1-1 correspondence between E and Cl0(E). (Here we abuse of notation:
E means the set of closed points in E, when we want to take it as a group).

We just consider the special case of elliptic curves

y2z − x3 + xz2 = 0

then let P0 = [0 : 1 : 0] ∈ E and ÷(z) = 3P0 on E due to the following equations{
y2z − x3 + xz2 = 0

z = 0

have 3 zeros at z = 0, x = 0.
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Then let L ⊂ P2 be a line ax+ by+ cz = 0 and let l = ax+ by+ cz and L = ÷(l)
on P2. According to Bezout’s theorem and a line is of degree 1, L∩E has 3 points
(including multiplicities, then we have

÷(
l

z
) = P +Q+R− 3P0

which means that
[P +Q+R] ∼ 3[P0]

on E. Note that deg(P −P0) = 0 for any point P , hence P −P0 ∈ Cl)(E), then we
give a map α : E → Cl0(E) by

P 7→ [P − P0]

Now claim that it is injective: if P − P0 ∼ Q − P0, then P − Q ∼ ÷(f) for some
rational function f , if P 6= Q, then E ' P1 by F : E → Cl0(E)

x 7→ [1 : f(x)]

when x 6= Q and Q 7→ [0 : 1] and note that F ∗ ([1 : 0]) = P , thus degF = 0.
However, an elliptic curve is not rational, which leads to contradiction. Therefore,
we must have P = Q.

Next to show it is surjective: For any D =
∑
niPi ∈ Cl0(E) with ∼ ni = 0, then∑

niPi =
∑

ni(Pi − P0)

let L be a line in P2 determined by P0 and Pi, and let P0, Pi, Ri be L ∩ E and

(7) P0 + Pi +Ri ∼ 3P0

Hence Pi − P0 ∼ −(Ri − P0).
Then if ni < 0, we may replace Pi − P0 by −(Ri − P0) so that we may assume

ni > 0. In particular,
∑
ni > 0. If

∑
ni = 1 with all ni > 0, then D = Pi − P0,

which is in the image. Now we argue by induction on
∑
ni.

Observe that P1 − P0 + P2 − P0 ∼ P0 − R for some R (recall the relation 7, we
get such R be consider the intersection between E and a line determined by P1, P2)
Then there is a point T such that T − P0 ∼ P0 − R by consider the intersection
between the E and the line given by T, P0. Then we can use this observation to
proceed the induction.
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